HE 18.5 .A34 no. DOT-NHTSA 79-49 v.3

and the second second second of the second of the

An Analysis of the Automobile Market: Modeling the Long-Run Determinants of the Demand for Automobiles. Volume III - Appendices to the Wharton EFA Automobile Demand Model

PB30 16 6580

Wharton EFA, Inc. Philadelphia, PA

> DEPARTMENT OF TRANSPORTATION MAR 1 O 1987

> > LIBRARY

Prepared for

Transportation Systems Center Cambridge. MA

Dec 79

U.S. Department of Commerce

National Technical Information Service

A Section of the sect

REPORT NO. DOT-TSC-NHTSA-79-49.111

ちちっちっていたないない いちのほうない いちかく へいない

Flatter Andrew Start

DOT-HS-804 855

، سانات ما ما

AN ANALYSIS OF THE AUTOMOBILE MARKET: MODELING THE LONG-RUN DETERMINANTS OF THE DEMAND FOR AUTOMOBILES

Volume III - Appendices to the Wharton EFA Automobile Demand Model

> George R. Schink Colin J. Loxley

WHARTON EFA, INC. One University City 4025 Chestnut Street Philadelphia PA 19104

DECEMBER 1979 FINAL REPORT

DOCUMENT IS AVAILABLE TO THE PUBLIC THROUGH THE NATIONAL TECHNICAL INFORMATION SERVICE, SPRINGFIELD, VIRGINIA 22161

Prepared for

U.S. DEPARTMENT OF TRANSPORTATION NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION Office of Research and Development Washigton DC 20590

> REPRODUCED BY NATIONAL TECHNICAL INFORMATION SERVICE U.S. DEPARTMENT OF COMMERCE SPRINGFIELD, VA. 22161

New York Contraction and the Analysis with the day of the second second states and

NHTSA- 79-49	1. Report No. 2. Government Accession No.	Technical Report Docu 3. Recipient & Catalog No.	umentation Pag
V.3	DOT-HS-804 855	PB80 16	6580
51 ·	AN ANALYSIS OF THE AUTOMOBILE MARKET: MODELING OF THE	5. Report Date December 1979	
the second s	LONG-RUN DETERMINANTS OF THE DEMAND FOR AUTOMOBILES, Volume III - Appendices to the wharton EFA Automobile Demand Model	6. Performing Digonization C	ade
or the second	7. Author's) George R. Schink, Colin J. Loxley	DOT-TSC-NHTSA-79-	49.III
	.9. Performing Organization Nome and Address Whanton Economothic Econocating Accordington Inc. t	10. Work Unit No (TRAIS) HS027/0404	
	4025 Chestnut Street	11 Contract or Grant No. DOT-TSC-1072	
a for the second	Philadelphia, Pennsylvania 19104	13. Type of Report and Perio	od Covered
	12. Sponsoring Agency Nome and Add(2): U.S. Department of Transportation	Final Report	: March 1977
	National Highway Traffic Safety Administration	14. Spansoring Agency Cade	
	Washington DC 20590	100	
	*Under contract to: Transportation Systems Center Cambridge MA 02142	Administration	
and the second	16. Absure: An econometric model is developed which provides forecasting of annual trends, for U.S. auto stock, new by auto size-class. The concept of "desired" (equilib "Desired stock" and its composition by size-class are and demographic variables using cross-section data. An cost per mile" measure, which expresses all costs over discounted back to the present. New registrations, to are found to be strongly related to "desired" stock re other influences operating as "speed of adjustment" far	long-run policy anal sales, and their co rium) stock is intro related to numerous mong them is a new " time relative to mi tal and by class, an lative to actual sto ctors. Fuel efficie	ysis and poposition oduced. economic capitalized les driven. d scrappage ock, with ency is
	16. Absurct An econometric model is developed which provides forecasting of annual trends, for U.S. auto stock, new by auto size-class. The concept of "desired" (equilib "Desired stock" and its composition by size-class are and demographic variables using cross-section data. Au cost per mile" measure, which expresses all costs over discounted back to the present. New registrations, to are found to be strongly related to "desired" stock re other influences operating as "speed of adjustment" far analyzed in detail, relating mpg by class to physical technological developments. Purchase prices and option and all cost measures distinguished by foreign vs doments size-class. Volume I summarizes and describes the stur- through 2000. Volume II contains extensive simulation implications. Volume III contains data and methodolog:	long-run policy anal sales, and their co rium) stock is intro related to numerous mong them is a new " time relative to mi tal and by class, an lative to actual sto ctors. Fuel efficie vehicle characterist ns expenditures are stic origin as well dy, and contains a f analysis, with publ y appendices. DEPA TRANS	ysis and mposition oduced. economic capitalized ids driven od scrappage ock, with incy is cics and analyzed as by forecast ic policy RTMENT O SPORTATIO
	16. Absure: An econometric model is developed which provides forecasting of annual trends, for U.S. auto stock, new by auto size-class. The concept of "desired" (equilib "Desired stock" and its composition by size-class are and demographic variables using cross-section data. Au cost per mile" measure, which expresses all costs over discounted back to the present. New registrations, to are found to be strongly related to "desired" stock re other influences operating as "speed of adjustment" far analyzed in detail, relating mpg by class to physical technological developments. Purchase prices and option and all cost measures distinguished by foreign vs doments size-class. Volume II contains extensive simulation implications. Volume III contains data and methodolog	long-run policy anal sales, and their co rium) stock is intro related to numerous mong them is a new " time relative to mi tal and by class, an lative to actual sto ctors. Fuel efficie vehicle characterist ns expenditures are stic origin as well dy, and contains a f analysis, with publ y appendices. DEPA TRANS	ysis and pmposition oduced. economic capitalized les driven od scrappage ock, with ency is cics and analyzed as by forecast lic policy RTMENT O SPORTATIO
	 16. Absurct An econometric model is developed which provides forecasting of annual trends, for U.S. auto stock, new by auto size-class. The concept of "desired" (equilib "Desired stock" and its composition by size-class are and demographic variables using cross-section data. Au cost per mile" measure, which expresses all costs over discounted back to the present. New registrations, to are found to be strongly related to "desired" stock re other influences operating as "speed of adjustment" far analyzed in detail, relating mpg by class to physical technological developments. Purchase prices and option and all cost measures distinguished by foreign vs doments size-class. Volume I summarizes and describes the stu- through 2000. Volume II contains extensive simulation implications. Volume III contains data and methodolog: 17. Key Merdet Automobiles, Long-Run Forecasting, U.S. Demand, Annual Stock, New Sales, Scrappage, Fuel Efficiency, Auto Costs 18. Distribution Stock Net GRMATIO Vinditue 221 	long-run policy anal sales, and their co rium) stock is intro related to numerous mong them is a new " time relative to mi tal and by class, an lative to actual sto ctors. Fuel efficie vehicle characterist ns expenditures are stic origin as well dy, and contains a f analysis, with publ y appendices. DEPA TRANS VIAL	ysis and mposition oduced. economic 'capitalized ics driven od scrappage ock, with analyzed as by forecast ic policy RTMENT O SPORTATIO ? 1 () 1987
	 16. Abstract An econometric model is developed which provides forecasting of annual trends, for U.S. auto stock, new by auto size-class. The concept of "desired" (equilib "Desired stock" and its composition by size-class are and demographic variables using cross-section data. At cost per mile" measure, which expresses all costs over discounted back to the present. New registrations, to are found to be strongly related to "desired" stock re other influences operating as "speed of adjustment" far analyzed in detail, relating mpg by class to physical technological developments. Purchase prices and option and all cost measures distinguished by foreign vs dome: size-class. Volume I summarizes and describes the stuthrough 2000. Volume II contains extensive simulation implications. Volume III contains data and methodolog. 17. Key Words Automobiles, Long-Run Forecasting, U.S. Demand, Annual Stock, New Sales, Scrappage, Fuel Efficiency, Auto Costs 18. Distribution Sterney Cleased. (of this report) Unclassified 20. Security Cleased. (of this report) Unclassified 	long-run policy anal sales, and their co rium) stock is intro related to numerous mong them is a new " time relative to mi tal and by class, an lative to actual sto ctors. Fuel efficie vehicle characterist ns expenditures are stic origin as well dy, and contains a f analysis, with publ y appendices. DEPA TRANS WAY	ysis and pmposition oduced. economic capitalized les driven nd scrappage ock, with ency is cics and analyzed as by forecast ic policy RTMENT O SPORTATIO ? 1 () 1987 IBRARY
	16. Abstract An econometric model is developed which provides forecasting of annual trends, for U.S. auto stock, new by auto size-class. The concept of "desired" (equilib "Desired stock" and its composition by size-class are and demographic variables using cross-section data. A cost per mile" measure, which expresses all costs over discounted back to the present. New registrations, to are found to be strongly related to "desired" stock re other influences operating as "speed of adjustment" far analyzed in detail, relating mpg by class to physical technological developments. Purchase prices and option and all cost measures distinguished by foreign vs dome: size-class. Volume I summarizes and describes the stu- through 2000. Volume II contains extensive simulation implications. Volume III contains data and methodolog. 17. Key Nords Automobiles, Long-Run Forecasting, U.S. Demand, Annual Stock, New Sales, Scrappage, Fuel Efficiency, Auto Costs 18. Distribution Ste DOCUMENT IS THRONGHITH INFORMATION VINCIMATED 19. Security Cleased (of this report) Unclassified 20. Security Cleased, (of this pege) Unclassified 19. Security Cleased (of this report) Unclassified 20. Security Cleased, (of this pege) Unclassified	long-run policy anal sales, and their co rium) stock is intro related to numerous mong them is a new " time relative to mi tal and by class, an lative to actual sto ctors. Fuel efficie vehicle characterist ns expenditures are stic origin as well dy, and contains a f analysis, with publ y appendices. DEPA TRANS view savaiLable to THE PUBLIS is avaiLable to the publis is	ysis and mposition oduced. economic capitalized les driven of scrappage ock, with ency is tics and analyzed as by forecast lic policy RTMENT O SPORTATIO 2 1 () 1987 IBRARY

PREFACE

A research undertaking of this magnitude required the concerted efforts of many people, each of whose contributions were essential to its successful completion. The entire project was overseen by the project director, George R. Schink, who also conceived the overall structure of the model. James Savitt helped develop the approach employed, and assisted in the initial data gathering effort and equation estimation. Arthur Doud supervised the work of preparing data bases and computer systems, as well as having the main responsibility for the international modeling effort. The exogenous projections for the model's forecasts were primarily developed by Sonia Klein. The final report was written and revised by Colin Loxley, who also was responsible for the forecast and simulation analysis. The prinicpal research assistant throughout was Brenda McCowan. Most of the typing for the final report was performed by Renee Scott. Finally, the authors wish to acknowledge the help of the TSC personnel Ron Mauri and Bob Mellman, whose critical reviews undoubtedly improved the final report. This report was originated under the Transportation Energy Efficiency Program (TEEP) at the Transportation Systems Center (TSC), under the sponsorship of the U.S. Department of Transportation, Office of the Secretary (DOT/OST). Work was completed under sponsorship of the U.S. Department of Transportation, National Highway Traffic Safety Administration (DOT/NHTSA).

the state and the state of a state when the state 1. . t. D. .. こうないのない 「「「「「」」」」「「「」」」」」「「」」」」」」

iii

METRIC CONVERSION FACTORS

iv

Station Street

CONTENTS

Appendix				Page
A1	DOCUM	ENTATION C	OF DATA SQURCES AND METHODOLOGY	A1-1
	A1.1 A1.2 A1.3	INTRODUCT OVERVIEW SOURCES F	TION. OF THE DATA BASE FOR BASIC DATA SERIES	Al-1 Al-1 Al-2
	•	A1.3.1 / A1.3.2 (Auto Data Dther Data	A1-2 A1-3
	A1.4	SIZE CLAS MODEL EST	SS DEFINITIONS AND METHODOLOGY FOR DETERMINING	<i>k</i> 1-4
		A1.4.1 A1.4.2 A1.4.3 A1.4.4 A1.4.5 A1.4.6 A1.4.7 A1.4.8 A1.4.9 A1.4.10 A1.4.10 A1.4.11 A1.4.12 A1.4.13 A1.4.14	Size Class Definitions. Estimation of Miles Per Gallon. Cost Per Mile. New Car Prices. Transportation Charges. Purchase Taxes. End of Year Stock. Stock by Vintage and Size Class. Used Car Prices. Family Units By State. Consumer Prices by State. Income Distribution By State. Non-Auto Travel. Metropoliton Population.	A1-4 A1-8 A1-15 A1-25 A1-27 A1-32 A1-34 A1-34 A1-39 A1-56 A1-58 A1-62 A1-65 A1-69
A2	DISCU	SSION OF M	CODEL EQUATIONS	A2-1
	A2.1 A2.2 A2.3 A2.4	REVIEW OF CROSS-SEC TRANSLATI TIME SER	F BASIC STRUCTURE. CTION OF EQUATION ESTIMATE. ION TO TIME-SERIES. IES EQUATION ESTIMATES.	A2-1 A2-2 A2-8 A2-10
		A2.4.1 A2.4.2 A2.4.3 A2.4.4 A2.4.5 A2.4.6	New Registrations and Scrappage Vehicle Miles Traveled Miles Per Gallon New Car Prices Used Car Prices Income Distribution	A2-10 A2-14 A2-16 A2-18 A2-22 A2-24
A3	EXOGE	NOUS ASSU	MPTIONS	A3-1
	A3.1 A3.2	INTRODUC SOURCES	TION. AND METHODS	A3-1 A3-1
		A3.2.1 A3.2.2 A3.3.3	Demographic Inputs Economic Inputs Auto Characteristic	A3-1 A3-6 A3-9
£4	REPORT	OF NEW T	ECHNOLOGY	A4-1

LIST OF TABLES

Table		Page
A1-1	FORMAT FOR DOMESTIC CAR IMAGE FILE	A1-72
A1-2	FORMAT FOR FOREIGN CAR IMAGE FILE	A1-76
A1-3	LISTING OF NAMEPLATES BY SIZE CLASS FOR DOMESTIC CARS IN 1972.	A1-78
A1-4	LISTING OF NAMEPLATES BY SIZE CLASS FOR FOREIGN CARS IN 1972	A1-80
A1-5	MARKET SHARE BY CLASS FOR DOMESTIC CARS	A1-81
A1-6	MARKET SHARE BY CLASS FOR FOREIGN CARS	A1-82
A17	MARKET SHARE BY CLASS FOR TOTAL CARS	A1-83
A1-8	U.S. SHARE OF NEW REGISTRATIONS BY CLASS	A1-84
A1-9	CITY AND HIGHWAY DRIVING MPG EQUATIONS	A1-85
A1-10	A COMPARISON OF <u>CONSUMER REPORTS</u> AND EPA CITY AND HIGHWAY DRIVING MPG DATA (1975)	A1-87
A1-11	SALES WEIGHTED AVERAGE CITY AND HIGHWAY MPG ESTIMATES (1958- 1974) BY SIZE CALSS (DOMESTIC AND FOREIGN)	A1-88
A1-12	SALES WEIGHTED AVERAGE CURB WEIGHT AND ENGINE DISPLACEMENT (1958-1974) BY SIZE CLASS (DOMESTIC AND FOREIGN)	A1-89
A1-13	SALES WEIGHTED AVERAGE FRACTION OF AUTOMATIC TRANSMISSIONS AND OVERDRIVE UNITS INSTALLED (1958-1974) BY SIZE CLASS (DOMESTIC AND FOREIGN)	A1-90
Å1-14	SALES WEIGHTED AVERAGE FRACTION OF FOUR CYLINDER AND SIX CYLINDER ENGINES INSTALLED (1958-1974) BY SIZE CLASS (DOMESTIC AND FOREIGN)	A1-91
A1-15	PARAMETERS FOR COST PER MILE	A1-92
A1-16	ESTIMATION OF CONSUMER INSTALLMENT RATE, NEW AUTOS	A1-93
A1-17	OPERATING COST COMPONENTS BY SIZE CLASS AND YEAR OF OPERATION.	A1-94
A1-18	COSTS PER MILE ACROSS STATES IN 1972	A1-97
A1-19	NOMINAL COSTS PER MILE	A1-99
A1-20	REVISED BASE PURCHASE PRICES BY CLASS (USscPUBASE-2)	A1-100
A1-21	TOTAL OPTIONS EXPENDITURES BY CLASS (USasPUOPT-2)	A1-101

vi

「日本」を ころうちんで、 「「「「」」

LIST OF TABLES (CONTINUED)

<u>Table</u>		Page
A1-22	MAXIMUM OPTIONS PRICES BY CLASS (USscPOPTM)	A1-102
A1-23	TRANSPORTATION CHARGES FOR DOMESTIC CARS BY STATE (1972)	A1-103
A1-24	TRANSPORTATION CHARGES FOR IMPORTED SUBCOMPACT AUTOS BY STATE (1972).	A1-105
A1-25	TRANSPORTATION CHARGES FOR DOMESTIC AND FOREIGN CARS OVER TIME (1947-1974)	A1-106
A1-26	NEW AUTO SALES TAXES BY STATE, 1972	A1-107
A1-27	STATE AND LOCAL TAX RATES ON NEW AUTOSU.S	A1-109
A1-28	INTERPOLATION OF END OF YEAR CARS IN OPERATION (OPMVUAYEND)	A1-110
A1-29	ESTIMATION OF END OF YEAR CARS IN OPERATION BY STATE	A1-111
A1-30	ESTIMATED SURVIVAL PROBABILITIES FOR CARS BY VINTAGE YEARS	A1-112
A1-31	ESTIMATED SCRAPPAGE RATE ADJUSTMENT FACTORS AND FRACTION OF CARS WHICH SURVIVE EACH YEAR BY VINTAGE (1953-1974)	A1-113
A1-32	ESTIMATED NUMBER OF CARS IN OPERATION AT YEAR END DISAGGREGA- TED BY DOMESTIC AND FOREIGN SIZE CLASSES	A1-116
A1-33	ESTIMATED NUMBER OF CARS IN OPERATION AT YEAR END DISAGGREGA- TED BY SIZE CLASSES	A1-117
A1-34	AUTCMOBILES ON WHICH USED CAR PRICE DATA WAS GATHERED	A1-118
A1-35	PRICE OF ONE TO SEVEN YEAR OLD FULL-SIZE CARS RELATIVE TO A NEW FULL-SIZE CAR (1958-1974)	A1-119
A1-36	CONSTRUCTED PRICE RELATIVES FOR ONE CAR OLD CARS VERSUS NEW CARS OF THE SAME SIZE CLASS (1958-74)	A1-120
A1-37	ESTIMATES OF PRICE DECAY FACTORS (λ 's) BY SIZE CLASS (1958-1974).	A1-121
A1-38	ESTIMATES (BASED ON λ ESTIMATE) OF TWO TO SEVEN YEAR OLD FULL-SIZE DOMESTIC PRICE RELATIVE (1958-1974)	A1-122
A1-39	INDICES OF USED CAR PRICES, NEW CAR PRICES, AND NEW AUTO REGISTRATIONS	A1~123
A1-40	USED CAR MARKET IDENTITIES.	A1-124

vii

the subscription

LIST OF TABLES (CONTINUED)

<u>Table</u>		Fage
A1-41	DEFINITIONS FOR USED CAR MARKET IDENTITIES	A1 · 129
A1-42	NUMBER OF FAMILIES AND UNRELATED IN'JIVIDUALS BY STATE, 1970 AND 1972	A1-131
A1-43	CONSUMER COST INDEX DATA	A1-132
A1-44	CALCULATION OF 1972 RELATIVE PRICE INDEX DY STATE	A1-133
A1-45	INCOME DISTRIBUTION DATA FOR 1970 AND 1972, BY STATE AND U.S. TOTAL	A1-135
A1-46	INTERPOLATION OF MTWNAPT	A1-137
A1-47	INTERPOLATION OF MTWNAOTH	A1-138
A1-48	CONSTRUCTION OF METROPOLITANIZATION INDEX (NPMET)	A1-139
A2-1	DESIRED STOCK AND SHARE EQUATIONS	A2-25
A2-2	TOTAL NEW REGISTRATIONS AND SCRAPPAGE	A2-30
A2-3	SHARE OF NEW REGISTRATIONS EQUATIONS	A2-32
A2-4	DESIRED DOMESTIC SHARE BY SIZE CLASS EQUATIONS	A2-34
A2-5	DOMESTIC SHARE EQUATIONS	A2-35
A2-6	VEHICLE MILES TRAVELED	A2-39
A2-7	RE-ESTIMATED CITY AND HIGHWAY MPG EQUATIONS	A2-40
A2-8	E.P.A. MILES PER GALLON EQUATIONS	A2-43
A2-9	NEW CAR PRICE EQUATIONS	A2-45
A2-10	EXPENDITURES FOR OPTIONS INSTALLED	A2-50
A2-11	TRANSPORTATION CHARGES BY CLASS	A2-55
A2-12	USED CAR MARKET EQUATIONS	A2-59
A2-13	INCOME DISTRIBUTION EQUATION	A2-63
A3-1	TABLES OF EXOGENOUS INPUTS, BASELINE	A3-11

viii

APPENDIX A 1 DOCUMENTATION OF DATA SOURCES AND METHODS A 1.1 INTRODUCTION

This appendix is divided into three major subsections. The first presents a general overview of the WEFA data base while the second describes the sources for the basic data series. Finally, the third subsection presents a description of the size class definitions used and summarizes the methods used to construct those series needed for model estimation and not directly available from existing sources.

A 1.2. OVERVIEW OF THE DATA BASE

In the course of this project, Wharton EFA has assembled a massive and unique data base for the U.S. auto market. While it was not our primary purpose to construct such a data base, it was necessary that such a data base be constructed to support the model specification developed during the first three months of the project.

The U.S. auto market (and auto industry) is exceptionally well documented, but these data were not organized conveniently for our purposes. Since the quality of a model is limited by the quality of the data on which its estimation is based, we devoted much time and effort to carefully collecting, analysing, and organizing these data series. The end result is a data base containing detailed data on the

number of cars registered for 2234 different domestic cars (1947 to 1974) and 982 different foreign cars (1948 to 1974). For each of these domestic and foreign cars we have assembled data on base sticker prices, options prices, percent of options installed, weight of options, and curb weight and engine characteristics. In addition, a complete file on the number of new cars registered by state was assembled and matched with the U.S. total file for 1969 through 1972.

The WEFA model specification also required the collection of a large number of series for the U.S. and by state on income, prices, demographic characteristics, and transportation system characteristics.

The cross-section data base currently contains in excess of 500 data series while the time series data base contains in excess of 1200 data series (including aggregations of the auto data but not the model specific data).

A 1.3 SOURCES FOR BASIC DATA SERIES

A 1.3.1 AUTO DATA

The series for new registrations, cars in operation (the auto stock series used), and scrappage are all R.L. Polk and Co. data obtained either directly from R.L. Polk and Co. or from published material (either as shown in various issues of Automotive News Almanac

or as shown in various issues of <u>Wards Yearbook</u>). Data on auto characteristics (base sticker prices, base curb weight, percent of installed options, weight of installed options, price of installed options, and engine characteristics including number of cylinders and displacement) were obtained from various issues of <u>Wards Yearbook</u> and <u>Automotive</u> <u>News Almanac.</u>¹/The extent of this data is best illustrated by examining Tables A 1-1 (for domestic cars) and A 1-2 (foreign cars), pps. A1-72 and A1-76. These tables lay out the basic series contained in the WEFA auto registration and characteristics files as well as constructed series which are discussed in subsequent parts of this section. The domestic file contains data for 2234 individual autos while the foreign file contains data for 962 individual autos.

In addition, WEFA has the R.L. Polk and Co. state registration data (covering the 50 states, Washington, D.C and the Federal Government) for 1969 through 1972. These data match the U.S. total (in terms of number of cars included) over the same time period.

A 1.3.2 OTHER DATA

In addition to the substantial auto data base described above, WEFA has assembled large cross-section (1970-1972, for 50 states and D.C.) and

1/ These data (excluding base prices) for foreign cars prior to 1959 were obtained from a large assortment of British and U.S. auto magazines.

.

time series (1948-1974) data bases. These data bases include the various measures of price, economic, demographic, and transportation system variables required to support both the cross-section and time series equation estimation and model simulation work described elsewhere in the report. Without dwelling on specific series, the basic sources by type of data are as follows:

いたなない こんないちょう きんちち しろの かちちちん

いていてないないないないできるころうちんないないない

Income and some price data: Bureau of Economic Analysis Consumer price data: Bureau of Labor Statistics Demographic data: Bureau of the Census Transportation System Data: Federal Highway Administration and Bureau of the Census Foreign Price Data: OECD Data Bank · Gasoline Price Data: Platts Oil Handbook

A1.4 SIZE CLASS DEFINITIONS AND METHOPOLOGY FOR DETERMINING MODEL ESTIMATION DATA A1.4.1 SIZE CLASS DEFINITIONS

As described in Chapter 3 the five size classes are distinguished according to wheel base, this being a concise, unambiguous and easily compiled relative measure of passenger capacity and "roominess". The results of this classification scheme for 1972 may be seen as make and model listings by size for domestic cars in Table A 1-3, page Al-78, and for foreign cars in Table A 1-4, page Al-80.

Turning to the exceptions and special cases, $\frac{1}{2}$ for domestics the most important violation of the general rules centers around the shift of the largest Chevrolet, Ford, and Plymouth cars from mid-size cars to full-size cars which competed actively in the same market with Pontiac, Oldsmobile, Buick, Mercury, Dodge, and Chrysler full-size cars. Beginning with Chevrolet in 1959, these three makes introduced fullsize cars (Ford followed in 1960 while Plymouth only became fully competitive in the full-size market in 1964. $\frac{2}{1}$ To avoid an abrupt shift in the shares and to allow for a recognition lag on the part of consumers that, for example, the full-sized Chevrolet was essentially the same car as the full-sized Pontiac part of the full-sized new registrations by Chevrolet, Ford, and Plymouth were allocated to the mid-size class. The specific allocation of full-size to mid-size by year is as follows: 6/7 in 1959; 5/7 in 1960; 4/7 in 1961; 3/7 in 1962; 2/7 in 1963; and 1/7 in 1964. While this allocation scheme is clearly arbitrary, we felt that the abrupt shift was totally inappropriate given that consumers take time to adjust to the upgrading of a product.

The other exceptions for domestic cars are minor by comparison and are as follows:

1. Corvair is classified as a subcompact even though its wheel-

1/ To repeat, the general rules are: Subcompact: up to 100 inch wheelbase; Compact: 100+ to 111; Mid-Size: 111+ to 118; Full-Size: over 118; Luxury: classified by price.

2/ Plymouth brought out a full-size model in 1961, but didn't offer the full range of full-size models until 1964.

A1-5

And the second second second

base was greater than 100 inches (reviewing the sales literature from the period, it is clear that it was GM's intent to use the Corvair to compete with VW).

 Mercury cars in the early 1950's had a wheelbase which was shorter than full-size cutoff, but Mercury was kept in the fullsize class.

There are a few other minor exceptions, but they involve too few cars to merit enumeration.

ちんちょうないのないのないのでき 二日日のこうでん

For foreign cars, the major problem centers around the fact that the registration detail for imports does not distinguish models. Thus, we have one number for Audi with no split between the tax (subcompact) and the 100LS (compact). Imports are thus classified by make, e.g. all Audi sales are classified as "compacts". The makes listed under foreign compacts in Table A 1-4 were, for most of the time period, the major entrants in the compact market and (with the exception of the Citroen Masserati) were al-ways classified as compacts. ^{1/} The major questionable entrant in the luxury group (on a strict price basis, especially in the earlier years) is the Alfa Romeo, with Porsche falling slightly below the cut-off point in the early 1960's and late 1950's. Since these two cars are anything but utilitarian transportation, and have always been substantially more ex-

A1-6

station and stilled which million the state of

While all Peugeot and Saab models belong in this group on the basis of the wheelbase criterion, problems (in addition to the Audi problem discussed in the text) include large wheelbase Citroens and the Volvo 164 which belongs in the luxury group.

pensive than the Triumph or MG sports cars included under subcompacts (which is the only other place to put the Alfa Romeo and Porsche), we elected to always include these cars in the luxury group. It should be noted that no foreign cars are included in the mid-size or full-size classes. $\frac{1}{2}$

Table A 1-5, page Al-81, presents the number of new registrations and market share by size class for the five domestic classes, while Table A 1-6, page Al-82, presents the same statistics for the three foreign car categories and Table A 1-7, page Al-83, presents these statistics for combined domestic and foreign (total) cars.

「「「「「「「「「」」」」、「「「「」」」」、「「「」」」、「「」」」、「」」、「」」、「」」、「」」、「」」、「」」、「」」、「」」、「」」、「」」、「」」、「」」、「」」、「」、」、」、」、」、」、

「「「「「「「「「「」」」」

Domestic subcompacts accounted for a very minor share of the U.S. market prior to $1970, \frac{2}{}$ and prior to 1959, the compact share of the domestic market was also very small. The mid-size (intermediate in Table) class falls rapidly from 1959 to 1965 primarily due to the movement of the largest Chevrolet, Ford, and Plymouth from the mid-size to full-size category. The luxury class share increases fairly steadily throughout the period.

The largest market share with the foreign car group is the subcompact group. The compact share has been fairly stable since 1960 but exhibits a noticeable increase in 1972, 1973, and 1974. In the earlier years, the share held by luxury cars in total foreign cars was fairly sub-

THE REAL

and a more with the second second

^{1/} A very few foreign cars could have been included in these classes. However, none were imported in any substantial numbers, leading to very small proportions being involved. We therefore chose to classify them down as compacts (Citroen in a few years) or up as luxury cars (source of the English cars of the early fifties).

^{2/} Between 1947 and 1969, the cars included in domestic subcompacts are the following: (1) Crosley; (2) Nash Rambler and Rambler American (100 inch wheelbase); (3) Henry J; (4) Allstate; (5) Corvair; and (6) King Midget.

stantial, but fell sharply in 1957 as VW began to market seriously in the U.S. Since 1958, the luxury share has been quite stable.

Turning to the total market share table, one of the more interesting features is the sharp upsurge in the subcompact share during the 1959 through 1961 period due largely to the sharp increase in foreign subcompact sales. The remaining categories essentially follow the same pattern as observed for the domestic cars as domestics dominate (or are the sole members) of these groups.

Table A 1-8, page A1-84, shows the domestic new registration's share for each of the five size classes. The erratic movements in the domestic share of subcompacts prior to 1970 is due in large part to the small number of domestic cars. Starting in 1970, when the U.S. auto makers first decided to compete in this market, the domestic share of subcompacts has risen steadily, attaining a high of 48.22% in 1974. The domestic share of the compact market has declined slowly but fairly steadily from a recent high of 98.17% in 1962 to a recent low of 92.50% in 1974. In addition, foreign luxury cars have made significant gains in the luxury market: the domestic share of luxury cars was 96.32% in 1965 and it fell to 88.21% in 1974.

A 1.4.2 ESTIMATION OF MILES PER GALLON

Marca Cale and a statistication of the

Fuel efficiencies by class are critical variables in the model.

Not only are they a prerequisite for evaluation of gasoline costs, but their future trends are also of concern in their own right, given present concerns with energy use. Estimates of miles per gallon for each class and by foreign and domestic within classes are therefore required.

The approach used in this study begins by estimating relationships based upon data for a sample of individual autos. Given this dat., we can estimate mile per gallon for each model sold in a particular year, using its known characteristics of weight, engine size, etc. The sales-weighted (harmonic) mean MPG is then computed for all models in a particular class, yielding the class MPG. It is these mileage data that are used to estimate the equations for the class relationships used in the model to project MPG by class. $\frac{1}{2}$

At the outset of this study, we had planned to use MPG estimates developed by T.C. Austin and H.H. Hellman for the EPA.^{2/} The authors presented estimates of fuel economy (MPG) for 1957 through 1975 by inertial weight classes. These estimates were based on very small samples for the parlier years, and the authors caution that these early results are possibly subject to large errors. Close examination of the results (See Table 1 in the Austin and Hellman Study) reveals rather erratic variations over time and across classes. Since a reasonable MPG estimate is

^{2/} See Thomas C. Austin and Karl H. Hellman, Passenger Car Fuel Economy -Trends and Influencing Factors, Society of Automotive Engineers Reprint No. 730790.

^{1/} Due to the averaging process the parameters estimated for model data cannot be directly applied to class data.
essential to compute cost per vehicle mile properly, we investigated alternative potential sources for MPG estimates. The various auto magazines have not been consistent until very recently in their techniques of measuring MPG in their road tests. The only source which has been quite consistent in its testing and reporting procedures is <u>Consumer Re-</u> <u>ports</u>.

Data from 723 individual road tests were collected from all issues (1950-1975) of <u>Consumer Reports</u> magazine.^{1/} The data collected included city driving MPG, nighway driving MPG, curb weight, engine displacement, horsepower, axle ratio, transmission type, number of cylinders,manufacturer and make, and body type (sedan or station). While <u>Consumer Reports</u> generally tests a "representative" sample of cars each year, it is not exhaust ve. To obtain estimates of MPG for those cars not explicitly considered, we therefore estimated equations for city and highway driving MPG (MPGC and MPGH, respectively) in accordance with the methodology outlined herein.

Austin and Hellman experimented with equation specifications for MPG involving engine horsepower (HP), inertial weight (IW), engine displacement (DISP), axle ratio (AR), compression ratio (CR), revolutions per minute, per mile, per hour in top gear (N/V), and NO_X emission

1/ For the earlier years, <u>Consumer Reports</u>, conducted some tests without providing complete information. As a result, some of these earlier tests were excluded from the analysis. The sample size of 723 is after these exclusions.

A1-10

and the second second

level in grams per mile (NOX). They specified an equation involving up to ten terms which is as follows:

 $MPG = a_0 + a_1 (1/IW) + a_2 (HP/IW) + a_3 (HP/DISP) + a_4 (AR) + a_5 (HP)$

$$+ a_{e} (DISP) + a_{2} (CR^{4} - 1) (CR^{4}) + a_{e} (N/V) + a_{g} (DISP) (N/V)$$

 $+ a_{70}(NOX)$

where the a, (i=0, 1, ..., 10) are coefficients to be estimated.

The estimated results for this equation $\frac{1}{2}$ indicate that only inertial weight (IW), displacement (DISP), and horsepower (HP) are statistically significant in explaining MPG from the list of variables considered, and that inertial weight (IW) alone produced a correlation coefficient of 0.9277 versus 0.9475 when all ten variables were included. However, their data included only 1973 model cars for which the relationship between all these factors might be quite close. Austin and Hellman consider as a potentially important factor, but do not include in their equation specification, transmission type (automatic, manual, or overdrive).

While we agree generally with Austin and Hellman on the list of relevant variables to be included in MPG equations, we had a strong a priori view that the form of the basic equation should be multiplicative (log-linear) rather than linear as follows:

1/ Austin and Hellman, op. cit., p.14.

A1-11

 $MPG = A (IW)^{\alpha} I (DISP)^{\alpha} Z (HP)^{\alpha} 3$

where

IW = Inertial weight,

DISP = Engine displacement,

HP = Engine horsepower

In estimating the equations, we tried both the linear and log-linear forms and the latter form fit the data better.

In specifying our equations, we considered inertial weight (IW), engine displacement (DISP), engine horsepower (HP), axle ratio (AR), type of transmission (DUMATR for automatic and DUMODR for overdrive), and number of cylinders (DUM4CYL for 4 or less cylinders and DUM6CYL for 6 cylinders). Early experimentation indicated the axle ratio (AR) was insignificant so this variable was dropped. We also found that only one of the engine size measures could be included in the equation (either displacement (DISP) or horsepower (HP)). Since the former variable was most significant when included alone and remained significant when horsepower (HP) was introduced, we elected to exclude horsepower (HP) from the equations. The transmission type dummy variables (DUMATR and DUMODR) and the number of cylinders dummies (DUM4CYL and DUM6CYL) also were significant in explaining MPG. $\frac{1}{}$

Table A 1-9, page A¹⁻⁸⁵, presents the estimated equations for city driving MPG (MPGC) and highway driving MPG (MPGH). Our results confirm

1' The overdrive dummy was relevant only for the highway driving MPG equation.

A1-12

the basic finding of Austin and Hellman that inertial weight (IW) is the most important factor in determining MPG, but engine displacement (DISP) is also an important factor. Both inertial weight (IW) and engine displacement (DISP) have stronger negative influences on city driving MPG (MPGC) than on highway driving MPG (MPGH). An utomatic transmission reduces MPGC by 3.2% and MPGH by 5.3% while an overdrive increases MPGH by 7.6%. Four and six cylinder engines increase MPG (vis- a -vis mileage for an 8 or more cylinder engine) for both city and highway driving.

The time shift dummies were introduced to capture technological factors such as engine and transmission efficiency improvements (positive effects), the increased installation of unaccounted-for options such as power steering and air conditioning (negative effects), and the introduction of pollution controls (negative effects). These shifts tend to coincide quite closely to major model offering changes. These time shift dummies suggest that these other factors caused city driving MPG to fall slightly between 1954 and 1955, decline very slowly through 1966, and then fall sharply in 1967.^{1/} These shift dummies suggest a very modest "efficiency increase" in city driving MPG in 1975.For highway driving MPG, the time shift dummies suggest a modest but steady improvement in MPG through 1966, where the trend reverses, reaching its minimum value

Part of this fall is due to a change in the Consumer Reports city test, causing MPGC to be 8-10% higher, 1950-66, i.e. about half the dummy variable shift. The dummy variable shifts can be seen in the changes in the dummy coefficients relative to the 1972 base.

in 1972. No perceptible improvement in MPGH was found between 1973 and 1975.

We had initially hoped to make use of some of the EPA MPG data for 1973 onward, but these data are inconsistent with the <u>Consumer Re-</u> <u>ports</u> data both in terms of levels (being consistently higher, especially for city drivers) and in terms of year to year movement (as a result of the changes in the EPA methods of calculating MPG from the emissions data). Table A 1-10, page A1-87, presents some comparisons of the <u>Con-</u> <u>sumer Reports</u> and EPA MPG estimates for 1975. Given the discrepancies between the <u>Consumer Reports</u> and EPA MPG data, the equations presented in Table A 1-10 were used to estimate city and highway driving MPG data for 1947 to 1974.

To use these equations, data was collected on curb weight, displacement, percent with installed automatics, percent with installed overdrive, percent with 4 cylinder or less engines, and percent with 6 cylinder engines for each domestic and foreign car reported in the R.L. Polk and Co. new registrations data. $\frac{1}{2}$ The equations were then applied to each auto in the file (2234 domestic cars and 982 foreign cars) to generate estimates for city and highway MPG for that car. Then individual new car registration data were aggregated into the 8 basic size classes (5 domestic and 3 foreign) $\frac{2}{2}$. Sales weighted means for the

Displacement and curb weight rate were collected for cars with 4, 6, and 8 cylinder. engines installed. Since more than one engine displacement is offered for many of the cylinder sizes, the "typical" engine for the number of cylinders was collected as described in Section (i.e. ends) was collected.

 $\frac{2}{1}$ The definition of these classes is given in Section A 1.4.1, page Al-4.

city and highway estimates of MPG (MPGC and MPGH, respectively) were computed for each class (see Table A 1-11, page A1-88), as well as sales weighted averages for the basic determinants of these MPG estimates: $\frac{1}{}$ curb weight and engine displacement (see Table A 1-12, page A1-89); fractions of cars with automatic transmission, and overdrive (see Table A 1-13, page A1 - 90); and fractions with 4 (or less) cylinder engines and with 6 cylinder engines (see Table A 1-14, page A1 - 91).

A 1.4.3 COST PER MILE

The cost per mile measure originated for this study is of critical importance as a major influence on both total autos demand and its distribution by class and by domestic versus foreign origin.

As discussed in Chapter 3, there are three elements that enter the conceptual basis for cost per mile:

- -- The stream of expenditures must be put onto the same scale, and thereby compared to, the stream of services. This means that the costs and benefits (miles driven) over time must be capitalized i.e. discounted back to present value terms.
- -- The costs considered are all those incurred over the economic life of the vehicle and not solely those faced by the new car buyer, i.e. the relevant costs are those incurred by all owners of the vehicle. The cost per mile measure might therefore be characterized as a "social" or "society" cost.
- -- All costs of purchase and operation should enter into the calculation in proportion to their relative importance so that the appropriate weight is given to their economic significance.

1/ Required for the equation estimates by class as previously discussed.

The computational problems involved derive directly from these three principles. There is, first, the question of the "appropriate" discount-rate, second, whether (or how) the purchase-trade in-resale question should be addressed, and third, (related to the above) the treatment of purchase cost vs. operating costs.

The discount rate choice is, inevitably, somewhat arbitrary. Since future costs are projected at current levels (i.e., no inflationary expectations are incorporated) it should be a "real" discount rate. The rate should reflect the consumer's willingness to sacrifice present consumption for the future benefits expected from the "capital good" purchased. We examined the implicit real interest rate that consumers have been willing to pay for mortgages, and found (for 1972, the "equilibrium" year) this to be around 5%.

In terms of our computed cost per mile figures the discount rate can vary over a fairly wide band without substantially altering the estimates--or, more importantly, their relative positions. The discount rate is of more significance in, for example, assigning importance to the gasoline cost component. Therefore, if the model were found to be unrealistically insensitive to gasoline cost, this would indicate the discount rate was too high.

Let the discount rate be denoted as R1 (where R1 is converted from percentage terms to a fraction), then costs incurred in year i are dis-

counted thus:

Discounted Cost_i = $COST_i/(1 + RI)^i = COST_i * (TI)^i$

where

 $T_1 = 1/(1+R_1)$

The car is assumed to have an economic life of 10 years, hence i takes the values 0 through 9.

The purchase and interest costs were analyzed as follows. The purchaser must pay the complete purchase cost of the car (PUTOT) - including the base list price plus extra options plus transportation plus taxes. In addition, there is a finance charge that depends upon the fraction of this total that is borrowed (FRACFIN), the period financed, and the installment rate (R2).

Since we are concerned with the cost to all owners, over the economic life of the car, the methodology adopted is to suppose that the vehicle is resold each year. Thus the first buyer pays interest on the financed fraction of the new car price. In the next year the second buyer pays interest on the new financed portion of the <u>one year</u> <u>old</u> price, and so on. This can also be interpreted as one purchaser, who, each year, renegotiates his auto financing, paying off each year an amount exactly equal to the car's economic depreciation and financing successively smaller amounts. So long as the used car market and financing sources are relatively 'perfect' markets, this approach

has the vehicle owner in equilibrium in each year. The finance costs in year i may therefore be represented as:

Finance $Cost_i = PUTOT * FRACFIN_i * PR_i * R2_i$ where: PUTOT = New car purchase cost

FRACFIN, = Fraction financed in year i

なるということであった

 $PR_i = Price of car age i relative to PUTOT$

The new car cost, PU/GT, is taken from the basic auto data and is an endogenous variable predicted by the model. The PR_i values are the average price relatives, across all classes, for the years 1969-72, determined from the price "decay" factors estimated for the used car price analysis (see later in this appendix). These values are given in Table Al-15, page Al-92, (PR_0 is, of course equal to one). The price relatives have remained fairly stable over time (according to our admittedly very limited information) and there is no data on interstate differences, thus they are constants.

The evidence on fraction financed comes from two sources. The <u>Federal Reserve Bulletin</u>, September, 1973, p. 643, Table 2, gives the average amounts financed for new cars from June 1971 to July 1973. The values range from an average of \$3,054 for the second half of 1971 to an average of \$3,231 for the first half of 1973. The <u>National Commission</u> on <u>Consumer Finance</u>, Technical Studies, Vol. III, p. 42, Table 1007-1, gives a figure for mid-1971 of \$2,975 for new cars. These values for 1971

are remarkably consistent and suggest a reasonable accuracy.

Comparing these values to our PUTOT estimates we find a ratio of about 0.75 over this period. $\frac{1}{}$ For used cars, the same Federal Reserve Bulletin source gives \$1600 for mid-71 and \$1800 for mid-73. Comparing these to our average used car price estimates, we observe a lower figure of 0.60 - 0.65. In evaluating these data we must take account of the fact that some cars will not be financed at all. For new cars, it would appear that only a fairly small proportion are completely unfinanced, but for used cars - especially older enes - quite substantial proportions may be unfinanced.

Given the limited data available we have elected to apply a declining FRACFIN as indicated in Table Al-15, page Al-92. Granted, these proportions are somewhat arbitrary but some assumption must be made until such time as a thorough study of automobile financing is performed. These fractions are held constant over time and across states (the Consumer Finance Commisssion study did suggest some interstate variation but we elected to ignore this for simplicity).

For auto finance rates we again have the two sources of the Federal Reserve Bulletin and the Consumer Finance Commission Study. Turning first to the cross-sectional analysis, the data are for mid-71 while our cross-sectional year is 1972. On the basis of the Federal Reserve

 $\frac{1}{1}$ Note that the Federal Reserve ratios given in the same table relate to dealer cost only.

Bulletin data (see above) for mid-71 and mid-72 the commercial bank rates by state $\frac{1}{}$ were adjusted downwards by 0.95, and the finance company rates by $0.98.\frac{2}{}$ The relative importance of banks versus finance companies for auto loans does vary by state. Fortunately the commission study has data on the ratio of new auto purchased paper to total new auto credit extended and this ratio is used to weight the finance company rate and one minus this is the weight for the commercial bank rate. Algebraically, we therefore have:

R2₁₉₇₂ = PRCHP/CR * (APRFIN * .98) + (1.0 - PRCHP/CR) * (APRCOMM * .95)

where:

「「ないたちを、たちをういいないないないないないないないない」

^{R2} 1972:	Mean Average Percentage Rates, by State, for New Autos, 1972.
PRCHP:	Volume of New Auto Purchased Paper, by State
CR:	Total New Auto Credit Extended, by State
APRFIN:	Mean Average Percentage Rates, by State, for New Autos, Finance Companies, Mid-1971.
APRCOMM:	Mean Average Percentage Pates, by State, for New Autos, Commercial Banks, Mid-1971.

For the time-series analysis we only have consistent data from the Federal Reserve Bulletin from January 1972 through April 1976. For this period the available evidence suggests a roughly equal distribution between commercial bank loans and finance company loans, and we therefore averaged

1/ \$3,000, 36 month loan, mean APR, page 44, Table 1008-1.

2/ Mean APR, page 49, Table 1011-1. Where not reported was equated to the bank rate plus 2% (2% was the average difference between the two).

the two for the new car mean APR.

Fortunately we were very successful in relating this consumer installment credit rate to Moody's Total Corporate Bond rate in order to obtain a complete time series (relationships were estimated both monthly and quarterly). The estimated equation and some of the annual estimates resulting are given in Table Al-16, page Al-93. Comparison with other rates - such as mortgage rates - (allowing for a faster response to inflation and a risk premium) suggest these values are reasonable.

Finally, we have allowed for the fact that much higher interest rates are charged on used autos than new. Once again, data are scarce and some arbitrary assumptions had to be made. Fortunately, since both FRACFIN and PR decline strongly over the age of the car, the importance of these assumptions becomes progressively less important. We have elected to increase the rate (R2) by 1% for each year of the car's age for the first 6 years, then setting it at the maximum permissible rate for the remaining three years of its economic life. For time-series use, the maximum rate was assumed to average 20 %. Rate ceilings by state are given in the Commission study referenced earlier, where no value was given, a rate of 22% was used.

Now we turn to operating costs. In the cross-sectional analysis these are divided into three groups: fuel costs, repair costs, and other. The latter includes insurance, tires, motor oil, and parking,

garaging, and tolls. Unfortunately there is no state data for these components.

Repair costs are estimated by assuming that interstate differences are primarily due to labor costs. For the U.S. in 1972 about half of repair costs were labor. We therefore computed a relative labor cost, using wages per man year for auto repair shops and garages in the state divided by the same for the U.S., gave this a weight of 50%, and weighted a constant (across states) parts index by 50%. The result is our estimated repair cost index.

The final direct operating cost category is fuel costs. Miles driven in a year are divided by MPG, and multiplied by the per gallon gasoline price, where the latter varies across states. $\frac{1}{}$ Operating costs by state (cross-sectional) can therefore be written as:

Operating Costs^{*j*}_{*i*} = REFIN^{*j*} * REP_{*i*} + OTH_{*i*} + (MILES_{*i*}/MPG^{*j*}_{*i*}) * PGAS^{*j*}

where:

Superscript j refers to state jSubscript i refers to age of car REPIN = Repair Index REP = Average Repair Cost

1/ A fixed distribution of mileage is assumed. While miles driven in a year undoubtedly does vary by state we have no data for this - as noted previously. MPG by class does vary by state because of different proportions of urban and highway driving.

OTF = Average Insurance, Tires, Oil, etc., Cost

MILES = Miles Driven

MPG = Miles Per Gallon

PGAS = Retail Price of Gasoline

In the time-series analysis each component of operating cost is distinguished. In computing the historical values for costs each component's 1972 value was indexed by the appropriate consumer price index, rebased to 1972 = 1.0.

The complete calculation of capitalized cost per mile can therefore be written as (omitting size class identification for clarity):

 $CPMCAP_t = (PCCAP_t + OCCAP_t)/MICAP_t$

where:

$$MICAP_{t} = \begin{array}{l} 9\\ \Sigma\\ i=0 \end{array} MILES_{i}/(1+RI_{t})^{i}$$

$$PCCAP_{t} = PUTOT_{t}^{*}(1+RI_{t})^{i} PR_{i}^{*} * FRACFIN_{i}^{*} * R2_{i,t}/(1+RI_{t})^{i})$$

$$PCCAP_{t} = \begin{array}{l} 9\\ \Sigma\\ i=0 \end{array} (MILES_{i}^{*} * PR3AS_{t}/MPG_{i,t}^{*} + aI_{i}^{*} * CPREP_{t}^{*}$$

$$+ a2_{i}^{*} * CPPKG_{t}^{*} + a3_{i}^{*} * CPINS_{t}^{*} + a4_{i}^{*} * CPTIR_{t}^{*}$$

$$+ a5_{i}^{*} * CPOII_{t}/(1+RI_{t})^{i}$$

Definitions of Terms and Assumptions:

The state of the second state of the

MILES: = Total Miles Driven in Car's ith year (Assumed constant over time, across size classes and across states) Thus cost per mile is a fixed-weight cost index for the average car. i = 0 1 2 3 4 5 6 7 8 9 MILES = 14.5 13.0 11.5 11.0 9.5 9.5 9.0 8.3 7.6 7.1

(Thous.)

PUTOT = Total Purchase Cost, New Car (Includes all costs, including taxes) PR, = Price Relative, Car Aged i Years to New (Averaged across all size classes, constant over time and across states) FRACFIN, = Fraction of Purchase Cost Financed in Car's ith year (Assumed constant over time, across size classes, and across states) $Rl_{\pm} = Discount Factor$ (5% used for Cross-Section) R2_{*i*,*t*} = Consumer Installment Rate, Car's *i*th year (Variation by age of car assumed) PRGAS₊ = Retail Gasoline Price (Includes taxes, varies by state) al; = Repair Cost in Car's ith year, 1972 -(Varies by constructed labor cost index across states) CPREP₂ = Consumer Price Index, Repairs, 1972=1.0 (Assumes same rate of change across size-classes) a2, = Parking, Toll and Garage Costs in Car's ith Year, 1972 (Assumed constant across size-classes and states) CPPKC₂ = Consumer Price Index, Parking, 1972=1.0 (See above) α_{3} = Insurance Costs in Car's *i*th Year, 1972 (Assumed constant across states) CPINS = Consumer Price Index, Insurance, 1972=1.0 (See above)

1/ All 1972 operating cost base data is from L.L. Liston and C.L. Gauthier, Cost of Operating An Automobile, U.S. Department of Transportation, Federal Highway Administration, Office of Highway Planning, Highway Statistics Division, April 1972.

- $\alpha 4_i$ = Tire Costs in Car's *i*th Year, 1972 (Assumed constant across states)
- CPTIR = Consumer Price Index, Tires, 1972=1.0 (See above)
 - $\alpha 5_i = 0il$ Costs in Car's *i*th Year, 1972
- CPOIL:= Consumer Price Index, 0il, 1972=1.0 (See above)

The data for operating cost components by size class and year of operation is given in Table AI-17, page AI-94. The 1972 capitalized costs per mile across states by class are given in Table AI-18, page AI-97 and the capitalized costs per mile over time by class are given in Table AI-19, page AI-99. Data and methods for purchase prices and their components are detailed in the next section.

A1.4.4 NEW CAR PRICES

There are many components to the total new car purchase cost (PUTCT) that are required for each of our eight size-classes. We begin with the base purchase and options prices. Our source data are the listed base sticker prices and options prices, $\frac{1}{}$ which we have not attempted to adjust for any discounts. These detailed statistics have been aggregated by sales-weighting up to the eight classes for analysis.

The first necessary step was to obtain estimates of these prices and expenditures that were consistent both across classes and over

17 See Section A1.3.1 for sources

A1-25

A CARE SHALL

time. The data consist of prices including installed options. But the number and type of options that were "standard" have varied widely between classes and over time - tending to show a steady upward trend for each class.

Therefore, in order to obtain comparable, consistent estimates, the value of all installed options - both "standard" and "extras"-was computed and subtracted from the initial base price to derive a base purchase price for a "stripped" vehicle in a given class. The revised estimates of base prices by class are given in Table Al-20, page Al-100.

This "stripped" base price should more acurately reflect changes over time in the cost of the car itself - and not merely the addition of more standard features - and differences in cost between sizes. Likewise, the series on expenditures for options now reflect the total spent in addition to the "stripped" base price. These revised data for options expenditures by class are given in Table Al-21, page Al-101.

A further series was computed for each class, the cost of a fixed ", ackage" of all options that could be installed. The reason for this was simple: increased expenditures on options reflect two things: greater consumer demand for more features <u>and</u> increases in the cost of

17 The purchase price is thus estimated as the sub of the base "stripped" price plus all options expenditures.

A1-26

the options available. Since the "maximum installed options" values relate to a fixed physical combination, increases in these values reflect rising costs only - it is, therefore, a pure "price" variable $\frac{1}{r}$ These maximum options prices by class are given in Table Al-22, page Al-102.

Finally, there was insufficient data on options for foreign cars to fully implement this approach. It was therefore decided to assume that expenditures on options were the same as the corresponding domestic class. Many of the options on foreign cars are produced in the U.S. and/or purchased from the same suppliers as U.S. companies. This assumption of "competitive equality" thus seems reasonable.

A1.4.5 TRANSPORTATION CHARGES

The next essential element in total delivered new car price to be considered is the data for transportation charges over time and for states in 1972. Since our definition of size classes does not exactly conform with any published definition, we needed transportation charges for specific makes and models which could be merged with our registrations file on a car by car basis, and then sales-weight averaged.

After a thorough search for data which came as close as possible to meeting our needs, we determined that the data on transportation charges (for domestic and foreign cars) prepared by the <u>Automobile Invoice</u>

 $[\]frac{1}{1}$ The maximum options price series is purely an intermediate variable used in analyzing the consumer's actual options expenditures. See Appendix A2 for its use.

<u>Service</u> (AIS)^{1/}were the most reliable and consistent available. They were kind enough to supply us with complete data on transportation charges for domestic cars by make and model for 76 cities from 1972 through 1976 (1972 is as far back as this extensive compilation extends). In addition, they supplied us with as much earlier transportation data as could be obtained from their back files, for Ford and Chevrolet Automobiles (all size classes) back to 1956 for the western region.^{2/} They also supplied us with data on estimated transportation charges for foreign subcompact cars for 41 cities for 1967 through 1972. These data are not model specific.

The first step in processing these data on transportation charges (both domestic and foreign) was to convert the city estimates into state estimates. Since the cities covered in the domestic and foreign data are not the same (more specifically, the cities included for the foreign transportation data are not strictly a subset of the cities included for the domestic transportation data), the following process was repeated for each of the two sets of data:

 For states with more than one city included, the city transportation charges were weighted by the SMSA population (or population of the county where the city was located for non SMSA's) and a weighted average was computed. In a few cases

A1-28

CARLES CONTRACTOR OF THE OWNER OF

^{1/} Automobile Invoice Service is a division of Gousha/A Times Mirror Company, 2001 The Alameda, P.O. Box #6227, San Jose, California, 95150.

^{2/} The only files which had been kept relatively consistently were for the western regions. Also, these values represented maximum charges.

cities not in the state but essentially contiguous with a city in the state were included in the average using as a weight the relevant population weight for the city within the state.

2) For states with no city present in the data, we used averages of rates for cities essentially the same distance from Detroit (in the case of domestics) or from the nearest port of entry (for foreign cars). In some cases, averages for cities whose average distance from the relevant point were equal were used.

Having determined the weighting scheme for computing the averages by state, the individual make and model transportation charges were examined (for domestics only) to see if there was a pattern involved so that the make and model data could be collapsed (without any loss of information) to a relatively small number of classes (denoted as transportation classes). In fact, the transportation charges can be grouped into 11 classes without any loss of information as follows:

- 1. All subcompact cars except specialty compacts (like Mustang II).
- Compact sedans and compact specialty cars (like the Pontiac Firebird).
- 3. Compact wayons.
- 4. Mid-size sedans
- 5. Mid-size wagons
- Low-priced full-size sedans (Ford, Chevrolet, Plymouth, and Dodge).

- Note: Dodge moves to the higher priced full-size group 19/0 and earlier. For some reason, transportation charges on the AMC Ambassador are high priced full-size rates.)
- 7. Low-priced full-size wagons
- 8. High-priced full-size sedans and wagons (all full-size cars not in group 6 or 7 and not luxury cars.
- 9. Specialty subcompact cars (like Mustang II).
- 10. Luxury cars (Cadillac, Lincoln, Imperial, Thunderbird, Packard).
- 11. Corvette (same rate applied to Shelby Cobra).

Table A1-23, page A1-103 presents the estimates for these classes for domestic cars by state in 1972 (excluding specialty subcompacts which were not sold in 1972). These charges were assigned to each car (according to its classification) and sales weighted averages by the five domestic size classes were computed for each state.

Given that we only have an estimate of foreign subcompact transportation charges, once the estimates by state were completed (as discussed above), no further processing was necessary. The estimated foreign imported subcompact car transportation charges by state for 1972 are shown in Table A1-24, page A1-105. After having reviewed these numbers and consulted with Automobile Invoice Service, it was determined that these estimates were biased downard, primarily because no transportation charge increases for foreign imports were reported from 1967 to 1972 while transportation charges on domestic cars had risen dramatically.

Therefore, these numbers were uniformly scaled upward by the ratio of U.S. average domestic subcompact transportation charges in 1972 over U.S. average imported subcompact transportation charges for 1972 (or by 78 over 59). Transportation charges by state for foreign compacts and foreign luxury cars were estimated by adding the difference between these transportation charges for domestic cars and domestic subcompacts by state to the estimated imported subcompact charge for the state. For the time series estimates, the foreign freight charges were set equal to the corresponding estimated domestic rate.

In estimating the time series data for domestic auto transportation changes by transportation class, numerous sources were used and the resulting estimates were a healthy mix of limited information and reasoned judgement. For 1972 through 1974 we were able to construct sales weighted estimates based on the city data supplied to us by Auto Invoice Service (see above). For the earlier years, the information used is much more limited.

In constructing the transportation estimates for 1972, we calculated the ratio of specific city data to the national average for a selected subset of cities for which we had transportation charges data for the earlier years. In 1972, New York City transportation charges are 97.26% of average U.S. transportation charges. Given this ratio,

and transportation charges data for New York by make and model for 1967 through 1970, the transportation charges by class were computed for New York City from 1967 to 1970 and divided by 0.9726 to form the average U.S. estimate.

Selected data was available for earlier years for New York and other cities and given the Ford and Chevrolet estimates for the West Coast (1956 to 1970) which were supplied to us by the Auto Invoice Service, the remaining transportation charges back to 1956 were estimated using constant ratios (based on the 1972 calculations) and a substantial amount of judgement, since the various estimates (based on the various ratios) of the U.S. average transportation charges were not consistent. For 1955 back, the 1956 rates were held constant.

The results of these calculations are shown in Table A1-25, page A1-106. While the earlier data (prior to 1967) are estimated by rather imprecise methods, we believe that better estimates would (for our purposes) be too costly to construct for whatever potential gain in accuracy is achievable.

A1.4.6 PURCHASE TAXES

From the plethora of tax rates levied at both the local and state levels we require some 'average' rate for the U.S. over time

and for states in 1972. The state and local tax rates on new auto purchases from 1963 to 1974 by state, were collected from various issues of <u>Automotive Fleet</u> magazine.¹/ Interpolation of data prior to 1963 was done by taking the 1963 value as the base, and increasing or decreasing it in proportion to the movement of the general sales tax rate for the state or local area concerned.²/ (These rates appear in Table Al-26, page Al-107, as TXRSAUTOY72 and TXRLAUTOY72).

The "total" rate by state was then computed two ways. First, the state and local rates were simply summed (TXRAUTOY72). Second the local taxes were weighted by the percentage of total local administrative units levying the tax $\frac{3}{}$ and added to the statewide rates. A correction was also made in cases where the taxes are not additive. The results of these computations also appear in Table Al-26 as TXRLWTDAUTOY72 and TXRWTDAUTOY72. These weighted averages were felt to be more appropriate and so were used, although the differences are minor.

The J.S. total rate for state and local taxes was computed by weighting the rates for each state by its share of total new car registrations in each year and summing across states. This was done for both the weighted and unweighted versions of taxes. These variables appear in Table Al-27, page Al-109. Again, the weighted average was felt to be the

A1-33

^{1/ &}quot;State Automobile Insurance, Registration and Tax Facts," <u>Automotive</u> Fleet, various issues, 1963-1975.

^{2/} State and Local Taxes--An Information Report, U.S. Advisory Commission on Intergovernmental Relations. Table 5, State General Sales Tax Rates as of January 1, 1952 through 1968.

^{3/} Ibid.; State and Local Sales Taxes, Table 18, Local Retail Sale Taxes by State, Selected Features, p. 52.

most appropriate (TXRWTDAUTO).

A1.4.7 END OF YEAR STOCK

For model purposes measures of the stock of cars in operation at the end of the year are needed, since our analysis is in calendar year terms. A mid-year stock estimate, for the first of July each year, is compiled by R.J.Polk and Co. In the time-series work a simple moving average was taken:

 $OPMVUAYEND_{\pm} = (OPMVUAY_{\pm} + OPMVUAY_{\pm+1})/2$

where:

OPMVUAYEND $_t$ = End of Year Stock, Year t.

 $OPMVUAY_{\pm} = Mid-Year Stock, Year \pm$.

These year-end stock estimates appear in Table Al-28, page Al-110, along with the basic data for OPMVUAY and new registrations (OMVUANR).

End of year stock by state for 1972 could not be estimated in this fashion because we lacked mid-year stock by state for 1973. Therefore, the <u>national</u> time series data (estimated above) was analyzed by regression analysis. In doing this the end of year stock figures were adjusted by half of total new registrations in order to allow (in the next step) for the sales variations that exist between states. The constructed variable is termed YEND-R, where:

Al-34

YEND-R = OPMVUAYEND - 0.5 OMVUANR

OMVUANR = U.S. New Car Registrations

The estimated relationship for this variable was:

YEND-R = 0.961122 * OPMVUAY (535.8) \bar{R}^2 = .999 S.E.E. = .56152 D.W. = 1.712 Period: 1948-73

We then estimate end-of-year stocks by state using:

$$OPMVUAYEND72E_{j} = 0.961122 OPMVUAY72_{j} + 0.5 OPMVUANRY72_{j}$$

where:

The adjusted estimates, as well as OPMVUAY72 and OMVUANRY72, are presented

in Table A1-29, page A1-111.

A1.4.8 STOCK BY VINTAGE AND SIZE CLASS

Having estimated year-end cars in operation by the method described above, we are faced with three problems: decomposing this stock into its vintage-year composition for the total stock; constructing series for the number of cars in operation at year-end for domestic and foreign cars disaggregated by size class; and estimating the vintage year composition of these disaggregated stock series. These various stock series are required to be consistent with the total cars in operation and with each other in the following ways:

- 1. The sum of the vintage year components of the stock over all vintages must equal total end-of-year stock.
- 2. The sum of year-end stocks for domestic and foreign stocks disaggregated by size class across all domestic and foreign size classes must equal total end-of-year stock.
- 3. For each vintage year component, the sum of the components of the disaggregated stocks across all domestic and foreign size classes must equal the corresponding vintage year component of the total stock.
- 4. The sum over all vintages of the vintage year components of the stocks disaggregated by domestic and foreign size classes must equal total stock disaggregated by domestic and foreign size classes.

Before stating these constraints in algebraic form, let us define

A1-36

and the second second

AND A BRIDE

the following symbols:

 $K_{t} = Total number of cars in operation at the end of year t$ $N_{t} = Total numbers of new cars registered during year t$ $S_{t} = Total number of cars scrapped during the year t$ $K_{t}^{C} = Number of cars of class c (c=1,...,8) in operation at the end of year t$ $N_{t}^{C} = Number of new cars registered of class c (c=1,...,8) during year t$ $S_{t}^{c} = Number of cars of class c (c=1,...,8) scrapped during year t$ $K_{t}^{c} = Total number of cars of vintage i (i=0,1,...,20)^{1/} in operation at the end of year t$ $KV_{i,t}^{c} = Number of cars of class c (c=1,...,8) of vintage i (i=0,1,...,20)^{1/}$ $KV_{i,t}^{c} = Number of cars of class c (c=1,...,8) of vintage i (i=0,1,...,20)^{1/}$ The four consistency constraints stated above can be expressed in terms

of the symbols defined as follows:

1) $K_t = \sum_{i=0}^{20} KV_{i,t}$ 2) $K_t = \sum_{i=0}^{8} K^{o}$ c=1 t3) $KV_{i,t} = \sum_{i=1}^{8} KV^{o}$ for i=0,...,20. c=1 i,t4) $K_t^{o} = \sum_{i=0}^{20} KV^{o}$ for c=1,...,8.

1/ We are assuming that no cars older than 20 years old are in operation, which is not strictly true but not an unreasonable cutoff point given that we must assume a finite life.

A1-37

The provide the state of the second second second

While R.L. Polk and Co. have prepared annual estimates of total cars in operation by vintage since the early 1950's, they have not prepared estimates disaggregated by size class until 1975. $\frac{1}{}$ We could have used the R.L. Polk and Co. estimates of cars in operation by vintage year for the total stock, but we chose not to take this approach for the following reasons:

- R.L. Polk and Co. state that the earlier data is inconsistent conceptually (includes a large number of light trucks) with the more recent data. While they have attempted to clean up the total stocks, they have not gone back and adjusted the vintage components.
- The earlier data on vintage year composition of the total stock, again according to R.L. Polk and Co., is much less reliable than the more recent data.
- 3. If we used these data, we would have to deal with the messy (and irrelevant for our purposes) problems of "lemon vintage years" and "good vintage years". For example, the 1958 and 1959 cars exhibited a higher scrappage rate than would be expected throughout the period (given annual scrappage and their age in any given year).
- We would still have to come up with an alternative approach for the disaggregated stocks.

Before indicating how we implemented our solution to estimating the stocks disaggregated by vintage and size class, let us outline the nature of our solution. First, let us define various "survival probabilities" as follows:

1/ The stock was disaggregated by nameplate, but this disaggregation was not useful to us.

Al-38

and a second second

(a) $P_i = probability$

that an i year old car will survive until the end of the current year given that it has survived until the end of the previous year $(i=0,1,\ldots,20)$

(b) q = protability

that an i year old car will not survive until the end of current year given that it has survived until the end of the previous year $(i=0,1,\ldots,20)$

 $= 1 - P_{i}$ for i=0,1,...,20(c) $PSE_{i} = \pi P_{j}$ for i=0,1,...,20

> = probability of a car surviving until the end of the ith year of its life

- (d) $PDE_i = q_i$ for i=0
 - $= (q_i) (PSE_{i-1})$ for i=1,...,20
 - probability of a car being scrapped during the ith year
 of its life
- (e) $PDEC_i = \sum_{j=0}^{i} PDE_j$ for i=1,...,20
 - = probability of a car being scrapped by the end of the ith year of its life
 - $= 1 = PSE_{i}$ for $i=0,1,\ldots,20$

The reader should note that the last three probabilities defined above $(PSE_i, PDE_i, and PDEC_i)$ are survival and scrappage probabilities based

on current year "transitional" probabilities $(p_i \text{ and } q_i)$. Therefore, two interpretations of the last three probabilities are possible. Using PSE_i as an example:

(1) PSE_i could be interpreted as the probability that a car sold this year will be in operation i years from now.

(2) PSE_i could be interpreted as the probability that a car sold i years ago will still be in operation at the end of the current year provided that the p_i 's have been constant for the last i years. Since constant p_i 's would require constant scrappage rates by vintage over time (which is not a viable assumption) we clearly have to modify the above definition of the p_i 's to allow variation over time.

However, let us first consider how we can make use of these "survival" probabilities in defining stocks disaggregated by vintage and size class which satisfy the four consistency constraints. Using the second interpretation of PSE_i given above (namely that PSE_i is the probability that a car sold i years ago will still be in operation at the end of the current year), if N denotes the number of new registrations, we can define the various stock components as follows:

(1) $KV_{i,t} = PSE_i * N_{t,i}$ for i=0,1,...,20.

(2)
$$KV_{i,t}^{\circ} = PSE_{i} * N_{z-i}^{\circ}$$
 for $i=0,...,20$
and $o=1,...,8$
(3) $K_{t}^{\circ} = \frac{20}{\Sigma}KV_{i,t}^{\circ}$ for $c=1,...,8$

If the P_i 's have been constant over the last 20 years (which we admit is an unrealistic assumption and will be modified later in this section), then it will be true (if we reinterpret the P_i 's as the fraction of iyear old cars which will survive until the end of the current year given that they survived until the start of the current year)^{1/} that the sum of the KV_{i,t}'s over i will equal K_i , or:

(4)
$$K_t = \sum_{i=0}^{20} KV_{i,t}$$
, and $i=0$

since the sum of new registrations over all classes in any year equals total new registrations, or:

(5) N _{t-i} =	$\sum_{c=1}^{8} N_{r-i}^{c}$	for	<i>i</i> =0,1,,20.
------------------------	------------------------------	-----	--------------------

it follows that:

(6) $K_{z} = \sum_{c=1}^{8} K_{z,z}^{c}$	for ∶=0,1,,20.
(7) $KV_{i,t} = \sum_{c=1}^{8} KV_{i,t}^{c}$	for <i>i</i> =0,1,,20.

 $\frac{1}{2}$ Even if we don't make this interpretation of the p_i 's, relationship (4) will hold in an expected value sense.

Al-41

Therefore, by defining a set of p_i 's and corresponding PSE_i 's, we can construct stock series disaggregated by vintage and size class which satisfy the four consistency constraints. We will also relax the constraint of constant p_i 's over time, but since the procedure requires the definition of "normal" p_i 's, let us first review how these series were constructed.

Using the table of cars still in operation by model year published in the 1975 Automotive News Almanac (obtained from R.L. Polk and Co.) $\frac{1}{}$, we calculated the fraction (probability) of cars which survived from July to July by vintage year. There are sufficient data in this table to construct 5 complete series of the following form.

Period of Life	EST 1	EST 5	AVR (1 to 5)
6-18	••		***
18-30			
30-42			
42-54			
54-66			* = =
	e =		

where period life refers to months after end of model year. The AVR refers to an average of the five estimates. The averages of these data were then converted from mid-year to end-of-year fractions (probabilities) as

1/ The table gives registrations by year model for 1959 (model years 1940-59), 1960 (1941-60), etc. through 1974 (1955-74).

A1-42

a service of the service of the

follows:

$$P_{1} = AVR_{6-18}$$

$$P_{2} = (AVR_{6-18} + AVR_{18-30}) / 2$$

$$P_{3} = (AVR_{18-30} + AVR_{30-34}) / 2 \text{ etc}$$

where AVR_{i-j} is the average fraction surviving from i to j months after the end of the model year (given that the car survived until the beginning of the *i*th month after the end of the model year).

The value for P_0 was abritrarily set at 0.998 (0.2% of new cars do not survive until the end of the year in which they are sold). The results of the calculations are shown in Table Al-30, page Al-112. The values for P_{12} through P_{20} are equal to a rounded average of the data computed via the formulas given above for P_{12} to P_{14} (which is as far back as the actual data goes). The original data was fluctuating around the 0.7 value for these three years. The PSE_i series falls to 0.012 by the end of the 20th year and PSE₂₁ is zero (or q_{21}) since we are assuming no cars more than 20 years old are on the road. It is interesting to note that the year with the highest probability of a car being scrapped (PDE_i) is the 10th year with the 11th and 9th years being the next highest.

Having obtained the estimates of "normal" vintage year survival (scrappage) probabilities (shown in Table A1-30), we must now define "actual" survival (scrappage) probabilities for each year v which satisfy the four consistency constraints for each year.

Since the solution involves first finding a set of probabilities which satisfy the first constraint for the first year (z=1) and then modifying these initial probabilities in each subsequent year, let us consider the problem of finding a set of probabilities which satisfies the first constraint for the first year, or find $PSE_{z,1}$ such that, for, the first year stock, K_1 :

(8)
$$K_{l} = \Sigma(PSE_{i,l}) * (N_{l-i})$$

(from definition (c))

where:

(9) $PSE_{i,1} = \pi P$ for *i*=0,1,...,20 *j*=0 *i*,1 (from definition (c))

(10) $P_{i,1} = 1 - (q_i) (r_1)$ (from definitions (a) and (b))

We are making a strong assumption in constructing the first year survival probabilities; namely, that the survival probabilities have been constant

and equal to first year survival probabilities $(P_{i,1} \text{ for } i=0,1,\ldots,20)$ for the last 20 years. However, this assumption is necessary to estimate a value for γ , and is relaxed for subsequent years.

The constant γ can be thought of as a scrappage adjustment factor. If scrappage is equal to the "normal" scrappage rates $(q_{\tilde{t}}, i=0, 1,...,20.)$ then γ will equal one. If scrappage is higher than the "normal" rate, then γ will be greater than one, while, if scrappage is less than the "normal" rate, γ will be less than one. We are assuming that changes in scrappage rates are proportional to the fraction normally scrapped $(q_{\tilde{t}}, i=0,1,...,20)$ i.e. a scalar change across all rates. This assumption means that when the scrappage rates are, for example, above the normal rate, that the scrappage rate increases by more in absolute terms for cars which "normally" have a higher scrappage rate.

To obtain a solution for γ , we rewrite the formula for PSE_2 , using (9) and (10), above, as follows:

(11)
$$PSE_{j,1} = \int_{j=0}^{2} (1 - q_{j,1})$$

Then substituting (11) into (8), we obtain:

(12)
$$K_{1} = \sum_{i=0}^{20} \sum_{j=0}^{\pi} (1 - q_{j} Y_{1}) * N_{1-i}$$

Now, by definition, scrappage is equal to the "given" (defined) scrappage from the surviving 21 year old cars plus the difference between the

cumulative total of new registration over 20 years and the actual existing stock.

Thus:
(13)
$$S_1 = (PSE_{20,1})(N_{1-21}) + \frac{20}{i=0}N_{1-i} - K_1$$

$$= (PSE_{20,1})(N_{1-21}) + q_0 Y_1 N_1 + \frac{20}{i=0}N_{1-i} + (1 - \pi) (1 - q_j Y_1))$$

--where $q_0 v_1 N_1$ is the first year scrappage.

However, from definition (3), PDEC:, we can also write total scrappage as:

(14)
$$S_1 = (PSE_{20,1})(N_{1-21}) + Y_1 PDEC_{i,1} * N_{1-i}$$

= $(PSE_{20,1})(N_{1-21}) + q_0 Y_1 N_1 + \sum_{i=1}^{20} Y_1 PDE_{i,1} * N_{1-i}$

(again, employing definition (e))

Comparing (13) and (14):

(15)
$$\gamma_1 * (PDE_{i,1}) = 1 - \prod_{j=1}^{\nu} (1 - q_j \gamma_1)$$
 (*i* = 1,...,20)

But definition (d) states that

$$\gamma_1 PDE_{i,0} = \gamma_1 q_i PSE_{i-1,1}$$
 (i = 1,...,20)

Therefore

(16) $1 - \prod_{j=1}^{i} (1 - q_j Y_j) = Y_j q_j PSE_{i-1,j}$

A1-46

and therefore

(17)
$$S_1 = (PSE_{20,1}) (N_{1-21}) + q_0 \gamma_1 N_1 + \sum_{i=1}^{20} 1 q_i PSE_{i-1,1} + N_{1-i}$$

Collecting γ_1 terms, and reordering (noting that γ_1 can be moved outside the summation):

(18)
$$\gamma_{1} = \frac{S_{1} - (PSE_{20,1}) (N_{1-21})}{q_{0} N_{1} + \sum_{i=1}^{20} (q_{i})(PSE_{i-1,1})(N_{1-i})}$$

Similarly γ_2 can be obtained as follows:

$$Y_{2} = \frac{S_{2} - (PSE_{20,1}) (N_{2-21})}{q_{0} N_{2} + \frac{20}{2}(q_{2}) (PSE_{2-1,1}) (N_{2-2})}$$

$$i=1$$

The values for $P_{i,2}$ and $PSE_{i,2}$ (for $i=0,1,\ldots,20$) are given by the following:

$$P_{i,2} = 1 - (\gamma_2) (q_i)$$
 for $i=0,1,...,20$
 $PSE_{0,2} = P_{0,2}$
 $PSE_{i,2} = (P_{i,2}) (PSE_{i-1,1})$ for $i=1,...,20$.

The convesponding general expression for Y_t , $P_{i,t}$, and $PSE_{i,t}$

A1-47

(t=2,...) are as follows:

$$Y_{t} = \frac{\sum_{i=1}^{S_{t} - (PSE_{20,t-1}) (N_{t-21})}}{q_{0} N_{t} + \sum_{i=1}^{20} (q_{i}) (PSE_{i-1,t-1}) (N_{t-i})} \qquad (\neq 2,...)$$

$$PSE_{o,t} = (P_{i,t}) (q_i) (for \ i=0,1,...,20, and \ t=2,...)$$

$$PSE_{o,t} = P_{o,t} (for \ t=2,...), and$$

$$PSE_{i,t} = (P_{i,t}) (PSE_{i-1,t-1}) (for \ i=1,...,20, and \ t=2,...).$$

These scrappage probabilities (fractions) satisfy the logical constraints that once a car has been scrapped it stays scrapped (no rebirths) and that for a car to be scrapped during the current year it must have survived until the beginning of the current year.

Table A1-31, page A1-113, presents estimates for γ_t (shown in the table under the smbol SPNEADJ) and the PSE_{*i*,*t*} (shown in table as SPSE*i*, for *i*=0,1,...,20) for 1953 through 1974. Examining SPNEADJ, we can see that the low post WW II scrappage rates carry over into 1953 and 1954, then SPNEADJ rises sharply for 1955 through 1957 which were strong new car sales years, falls sharply in the 1958 recession, climbs slowly through 1965, fluctuates around a value of one from 1965 through 1973 (increasing in strong new car sales years), and falls sharply in the 1974 recession.

Cars in operation at year-end by size class are computed as $\frac{1}{t}$ $K_{t}^{c} = \sum_{i=0}^{20} (PSE_{i,t}) (N_{t-i}^{c}) (for \ c=1,...,8)$

The results of this calculation are shown in Table A1-32, page A1-116. Table A1-33, page A1 , shows these stocks aggregated in the five major classes (total subcompacts, total compacts, domestic mid-size cars, domestic full-size cars, and total luvury cars).

A1.4.9 USED CAR PRICES

Included in the model is an analysis of the used car market. This feeds back into the rest of the model by affecting scrappage via used car prices. The data we require are prices by vintage and sizeclass. However, the used car market is the worst documented segment of the U.S. auto industry. Thus a considerable amount of work was required. Two series are available which measure used car prices: (1) the consumer price index (CPI) for used cars; and (2) the <u>Automotive</u> <u>News</u> wholesale auction price (PUSEDW). The CPI is based on a limited sampling of types of used cars (primarily Ford and Chevrolet mid-size to full-size cars which isn't a bad choice if you are going to have a limited sample) in the two to five year old range.

While total new registrations are published from 1921 to 1974, the size class breakout is only available from 1948 to 1974. The share for each of the 8 size classes from 1921 to 1947 was set equal to its 1948 to 1950 average value.

Despite any limitations to the CPI, it is more informative than the <u>Automotive News</u> wholesale auction price (PUSEDW) since the latter price varies with the mix and vintage of cars passing through this market. In a strong new car sales year, the wholesale auction market will do a large volume in recent vintage new car trade-ins while, in a slow new car sales year, relatively few of the newer vintage cars will enter the wholesale auction market.

Two other sources we consulted were the <u>Red Book</u> $\frac{1}{4}$ and the Used Car Guide of the NADA. $\frac{2}{4}$ In order to get as full a series of used car prices as possible we used selected cars in each class. Since prices of used cars by vintage vary throughout the year we used the July pricing guides wherever possible. We thus collected data from the N.A.D.A. <u>Used Car Prices</u> for a sample of domestic and foreign cars within each of the five size classes annually from 1958 to 1974.

There are two factors which could affect the reliability of the data. First our sample of cars was selected judgementally and for completeness of car type back as far as possible. Thus the sample is not random and may not be fully representative of all used cars sold. Second the dealers may or may not report their sales and prices accurately. Some people have suggested that there may be an incentive to report slight-

^{1/} Official Used Car Valuations published by National Market Reports, Inc., Chicago, 111.

^{2/} Used Car Prices, published by the National Automobile Dealers Association, Washington, D.C.

ly inflated retail prices in order to "firm up" a price of some cars. In any event we have chosen to take the numbers as given and adjust them only where there are obvious jumps in the data.

Table A1-34, page AI - 118, lists the cars in each class for which we gathered data. For each year and each car in the sample the used car guide lists the mean wholesale and retail prices of a zero year old car through a seven year used car if that car existed seven years previously. Thus, for each used car in each year there are eight pieces of data, one corresponding to each vintage price from the present back to seven years old.

We used the average reported retail price inclusive of a common set of options. For full size domestics, for example, the options include automatic transmission, power brakes, power steering, and air conditioning (an AM radio is considerer standard). In the most recent years the used car prices reported included these options. However, as one looks at the older editions of the particular car the average prices of those options must be added to the reported used car prices.

The prices of used cars in the analysis are net of any sales taxes or registration fees, since we are looking to explain relative movements in that market, rather than levels. A rinal point to be noted is that we used the Eastern Region editions of the used price guides. The prices in the other regions generally differ by a constant amount, and move in the

same direction as those in the Eastern Region.

In some cases where the car models came into existence during the sample period we had to splice the price series of one car with what seemed to be its closest predecessor in terms of basic physical specifications. In other cases, such as in certain subcompacts and compacts, we have put in the series as much as it exists and have not attempted any splicing. In constructing the sales weights for averaging purposes, where the car did not exist, the remaining cars and sales in the class were used to derive the share weights.

The annual used car price data for the cars shown in Table Al-34 were matched with the corresponding data in the new car file. The used car prices (vintage 1 to 7) were divided by the new car price (defined as base price + values of installed options + transportation charges) generating ratios equal to the value of a 1 to 7 year old car relative to a "comparable" new car.

The individual car ratios were then aggregated (using the weights also shown in Table Al-34) into average ratios by size class for domestic, foreign, and combined domestic and foreign autos. Since the sample size was relatively small, only the combined domestic and foreign ratios by size were used for the purposes of model estimation.

The end result of this procedure is a set of time series of data for each of the five size classes from 1958 to 1974 on the price of a

used car of vintage 1 to 7 years old relative to the current year's average new car price on the same class. For example, the full-size used car price relative can be written as follows:

PUIFDt/PNFDt = Price of a one year old full-size car (PUIFDt)
relative to the price of a new full-size car
(PNFDt) where t=1958,...,1974.

PU2FD_t/PNFD_t PU3FD_t/PNFD_t PU4FD_t/PNFD_t PU5FD_t/PNFD_t PU6FD_t/PNFD_t PU7FD_t/PNFD_t

Same type of ratio for 2 to 7 year old fullsize car prices relative to the new full-size price for t=1958,...,1974.

The values for these price relatives for full-size cars are shown for illustrative purposes in Table Al-35, page Al-119. The data for the other four size classes are similar except that the first year decline in price is substantially less for the smaller classes (particularly subcompacts and compacts).

To make use of all this price information but still keep the modeling effort manageable, it is necessary to reduce this array of price information to one or two data series. To accomplish this, one has to specify and estimate a functional relationship among the relative prices.

Al-53

After analysing the price relatives shown in Table Al-35 as well as the price relatives for the other size classes, we adopted the following approach:

- Develop equations for the price of a one year old car relative to the new car price for each class (See Table A1-35, page A1-120, relatives by size class), and
- (2) develop a one parameter functional relationship between the one year old price relative and the 2 to 7 year old price relatives.

The first concerns the estimation of behavioural relationships, and is therefore treated in detail in Appendix A2. The second part is handled by estimated identity relationships, and is therefore included here. After experimenting with a number of possible function forms, we decided to adopt an "exponential decay" type model for the relationship between the one year old price relative and the 2 to 7 year old price relatives. The basic model is as follows (using domestic full-size cars as an example):

$$\frac{PU_iFD_t}{PUIFD_t} = \exp \{-(i-1) \ \lambda \ FD_1t\} \text{ for } i=2,...,7 \\ \text{PUIFD_+} \text{ and } t=1958,...,1974$$

To implement this model, we were therefore required to estimate values of λ for each of the 5 size classes (ST,CT,MD,FD, and LT) for each year (1958,...,1974), which involved running 90 regressions. The results of these regressions were excellent for all classes in all years (the lowest \bar{R}^2 obtained in the 90 equations was 0.894). The estimated values

A1-54

La structure Transiente Statistics Front Party is the set of the

"Z'INSSER WINES

and the second second

for the λ 's are shown for each of the size classes in Table Al-37, page Al-121. Table Al-38, page Al-122, presents estimates of the two to seven year old price relatives for full-size domestic cars using the estimated λ_{FD} from Table Al-37 and the one year old price relative from Table Al-36. As can be seen by comparing Table Al-35, and Table Al-33, the estimates of λ_{FD} do very well in reproducing the original data on the two to seven year old price relatives. While we nad originally planned to model the λ 's (the PU/NADT_{SC}, sc = ST,CT, MD,FD,LT in Table Al-37) the movements overtime for these decay factors exhibited no relationship to any reasonable set of variables. Therefore, they are specified exogenously.

We have estimated three average price measures. First the WEFA average one year old price, PUSEDITT67, is a weighted average of the one year old prices, using 1967 new registrations as weights. This may be compared to the consumer price index (also based on 1967) as illustrated in Table Al-39, page Al-123. A regression equation demonstrates the close correspondance.

2n (CPI) = 0.192142 + 0.57290 2n (PUSEDITT67) (0.52) (12.13)

> $\bar{R}^2 = 0.925$ SEE = 0.0217 D.W. = 2.07 Period of Fit: 1962-1974

The second is the WEFA average traded used car price (PUSEDR).

This is computed as a weighted average by vintage <u>and by</u> class. The requisite identities are therefore quite complex, and are detailed in Table Al-40, page f_{1} -124.¹/ The definitions are given in the following table Al-41. This average can be compared to the ANWP figure, and as seen on Table Al-39, page Al-123, the correspondance is close.

Finally, the weighted average price for an old car was also computed (PUOLD). Again, these computations are detailed in Table Al-40. While the calculations for PUOLD and PUSEDR are intricate, the careful reader should find them largely self-explanatory.

A1.4.10 FAMILY UNITS BY STATE

For the cross-sectional analysis we require estimates of the number of family units for each state. Census Bureau estimates of the number of families and unrelated individuals for 1972 by state are not available. These variables were interpolated using ratios of the number of families and unrelated individuals by state in 1970 to resident population by state in 1970.

$$RF/P_{j} = \frac{NCFY70_{j}}{NPRY70_{j}}$$
$$RU/P_{j} = \frac{NPRU70_{j}}{NPRY70_{j}}$$

1/ Trade-in proportions are taken from data supplied by General Motors Corporation.

Al-56

A State of the sta

$NCFY72E_{j} = (RF/P_{j}) (NPRY72_{j})$
NPRUY72E _j = (RU/P _j) (NPRY72 _j)
$j = (1, 2, \dots, 51)$ for 50 states plus Washington, D.C.
NCFY70 = number of families by state, 1970
NCFY72 = number of families by state, 1972
NPRUY70 = number of unrelated individuals by state, 1970
NPRUY72 = number of unrelated individuals by state, 1972
NPRY70 = resident population by state, 1970
NPRY72 = resident population by state, 1972
NCFY72E = number of families by state, 1972, unadjusted to total
NPRUY72E = number of unrelated individuals by state, 1972,

The resulting estimates by state were then forced to sum to the U.S. total for NCF and NPRU, for which 1972 census estimated do exist. This was done by multiplying each state estimated by the ratio of the census estimate for the U.S. total (NCF₅₂, and NPRU₅₂) to the sum of the state estimates.

$$ADJF = \frac{NCF_{52}}{51}$$

\$\sigma NCFY/2E
\$\sigma = 1\$

A1-57

A THE REAL PROPERTY AND A REAL

 $ADJU = \frac{NPRU_{52}}{51}$ SI = NCFY72E J = 1 $NCFY72_{j} = (ADJF) (NCFY72E_{j})$ $NPRUY72_{j} = (ADJU) (NPRUY72E_{j})$

NCFY72 = number of families by state. 1972, adjusted NPRUY72 = number of unrelated individuals by state, 1972, adjusted

The final estimates are presented in Table A1-42, page A1-131. They preserve the 1970 relationships between families and unrelated individuals, and the resident population of each state. That is, for the purposes of interpolation the distribution of families by state in 1972 depends on the distribution of resident population by state as estimated by the Bureau of the Census. The number of families by state depends on the census estimate of the total number of U.S. families for 1972 and the ratio of families to resident population in 1970. The same is true for unrelated individuals. Since these ratios are relatively stable, this should be a reasonably reliable method of interpolating the 1972 data.

A.1.4.11 CONSUMER PRICES BY STATE

A relative price index by state is required as a deflator for the cross-sectional analysis. Measures of relative consumer price levels by state do not ordinarily exist. We thus had to estimate this series.

Al-58

The general method was to apply the index numbers in Index 4 of Table Al-43, page Al-132 , to the appropriate metropolitan and non-metropolitan areas of states, and weight them by the population in these areas.

Index 4 is a price index computed from budget data with fixed weights equal to the U.S. average quantities of items in the market basket for an urban family of four persons. It therefore measures only geographic differences in prices, and is a pure price index. These data are for the Fall of 1973, while what we require is an index for 1972. However, it may be argued that regional differences in price levels are stable enough to support the application of these price relatives to 1972. In any case this index is the only one available.

The first step in computing the index was to derive an index for the metropolitan area of each state, where metropolitan area is defined as the area inside SMSA's in that state. A price relative from Index 4 was assigned to each SMSA, or fraction thereof, in each state. The state SMSA index then becomes the weighted average of these price relatives for each state, where the weights are equal to the proportion of the state SMSA population in each SMSA.

 $\mathsf{PMET}_{\vec{j}} = \sum_{i=1}^{L} (\mathsf{WMET}_{i\vec{j}}) (\mathsf{P}_{i\vec{j}})$

WMET_{ij} =
$$\frac{\text{POPMET}_{ij}}{n_i}$$

$$\sum_{i=1}^{\Sigma} \text{POPMET}_{ij}$$

Al-59

 $\vec{j} = (1, 2, ..., 50)$ representing 50 states and Washington, D.C. $\vec{i} = (1, 2, ..., n)$ $n_i = number of SMSA's in STATE_j$ POPMET_{ij} = population in SMSA_{ij} $P_{ij} = price relative assigned to SMSA_{ij}$

In those SMSA's for which an index number did not exist in Table Al-43, the index number for the SMSA closest to it in location and economic character was used. The result of this calculation appear in the column market "Weighted SMSA Index" in Table Al-44, page Al-133.

The second step in the derivation of this state index was to combine the state metropolitan index with the regional non-metropolitan index applicable to the state (also given in Table Al-43), Here, the SMSA index was weighted by the proportion of state population in SMSA's while the non-metropolitan index was weighted by the proportion not in SMSA's.

 $PCY72E_{j} = (W_{j}) (PMET_{j}) + (1-W_{j}) (PNONMET_{j})$ n_{j} $W_{j} = \frac{\sum_{i=1}^{pOPMET} ij}{POP_{j}}$

 $PCY72E_{j}$ = unadjusted state index PNONMET_j = non-metropolitan price relative

A1-60

1

 $POP_{i} = total state population$

The results of this calculation appear in the column marked "State Index" in Table Al-44.

The third step was to compute the price relative for the U.S. total. This was done by taking a weighted average of the PCY72E in which the weights are proportional to the state's share of U.S. total resident population in 1972.

$$PCY72E_{52} = \sum_{j=1}^{51} (WUS_j) (PCY72E_j)$$

$$WUS_j = \frac{POP_j}{51}$$

$$\sum_{j=1}^{51} POP_j$$

This calculation involves a partial test of the methodology used in generating the state index numbers. This average should equal 100.0 if we are to have a proper index of relative prices. In this particular case, however, we can expect the average to be somewhat lower than 100. This is because Index 4 really applies only to the urban population. By weighting the non-metropolitan index by $(1-W_{ci})$, we have applied this index to the non-metropolitan non-urban population as well. Therefore the non-metropolitan index has more weight in our index than it had in computing the base for Index 4, and we can expect that PCY72E₅₂

will be below 100.0

This is in fact what happened, thus verifying our expectations and lending credence to our methodology (PCY72E₅₂ came out to be 98.1). Such a result is desirable, since we are trying to compute a price index applicable to the whole of each state. In theory we should include a separate index for the rural areas, but as none exists this is impossible.

The final step was to rebase the index by dividing by $PCY72E_{52}$. The index then became:

$$PCY72_{j} = \frac{PCY72E_{j}}{PCY72E_{52}}$$

 $j = (1, 2, \dots, 52)$

The results are shown in Table Al-44, in the column marked "State Index Rebased".

A.1.4.12 INCOME DISTRIBUTION BY STATE

Since we hypothesized that income distribution would affect the size and composition of the desired stock, income distribution data by state were required. However, these were not available for 1972. We experimented with two series: the percentage of families with incomes over \$10,000 in 1972 (PER10+Y72), and the percentage over \$15,000 (PER15+Y72). These data were generated using the following estimated equa-

tions:

PER10+Y70 = -12.5437 + 4.23518 (YP\$P3Y70/FM (2.53) (19.3)-23.5547 DUMDC -2.72981 NETTY70/FM (2.16)(0.65) $\bar{R}^2 = .915$ S.E. = 2.871 D.W. = 1.270Period of Fit: Cross Section - 50 States, Washington, D.C., U.S. Total. PER15+Y70 = -13.4602 + 3.06719 YPSP3Y70/FM (4.86) (25.07) -3.94634 DUMDC -8.17623 NETTY70/FM (0.65)(3.50) $\bar{R}^2 = .942$ S.E. -1.6053 D.W. = 1.618Period of Fit: Cross Section - 50 States, Washington, D.C., U.S. Total PER10+Y70 = percentage of families with incomes over \$10,000 by state, 1970 PER15+Y70 = percentage of families with incomes over \$15,000 by state, 1970 YPSP3Y7C/FM = permanent disposable income per family, three year weights, (3,2,1) by state, 1970 NETTY70/FM = total employment per family, by state, 1970 DUMDC = dummy for Washington, D.C.

As one would expect, both PER10+ and PER15+ are a positive function of permanent disposable income per family. The negative sign on total $c\pi$ -

Al-63

ployment per family may actually be due to a low wage rate. If the wage rate were low enough, it would cause a higher rate of employment per family as more family members are forced to seek work in order to support it, or are forced to remain in the family because they can't afford to move out on their own. In places where this is true the percentage of families with high incomes would probably be lower even though the employment rate per family were higher.

The observation for Washington D.C. was dummied out because the income distribution variable is a place of residence concept, while the income variable is a place of work concept. Since most of the more highly paid income earners do not live in the city, the income distribution is too low given the average income per family earned there.

These functions were actually used to project the change in PER10+ and PER15+. They were evaluated using 1972 values for the independent variables, and the difference between these 1972 estimates and the estimates given by the equations when using 1970 data was added to the actual 1970 values. This sum then became the estimated value for 1972.

> PER10+Y72 = PER10+Y70 + (PER10+Y72E - PER10+Y70E) PER15+Y72 = PER15+Y70 + (PER15+Y72E - PER15+Y72E)

(where the variables with the "E" on the end are estimates from the equations. Using estimates of the change instead of estimated levels reduces the probable errors).

Al-64

The data gathered by this procedure is given in Table Al-45, page Al-135. A.1.4.13 NON-AUTO TRAVEL

ALTIGETS HUNGAUTU TRAVEL

Despite much experimentation the only 'transportation system characteristic' variable that significantly affected desired auto stock was the series for means of travel to work, non-auto (MTWNA). We therefore report the data construction for this measure.

The data on means of travel to work exist only for the census years 1960 and 1970. For purposes of interpolating the non-auto component of these data into a complete time series, NTWNA was split into two variables.

> MTWNAPT = persons travelling to work via non-auto public transportation

MTWNAOTH = persons travelling to work by other non-auto means MTWNA = MTWNAPT + MTWNAOTH

The MTWNAPT time series was derived by interpolating and extrapolating its relationship to revenue passengers carried on public transit (RPUT) in 1960 and 1970, and then using this relationship to derive a time series for MTWNAPT from RPUT. MTWNAPT and RPUR are dissimilar units since the first involves some fractions of workers at the time of the census, while the second measures the number of passengers in a year. To put RPUT on a comparable basis with MTWNAPT, RPUT was divided by the number

of trips made in a year by a worker who uses public transportation to and from work. Assuming two trips per working day, and a two week vacation, this number is 500 trips. The resulting series was compared to the census data for MTWNA in 1960 and 1970. $\frac{1}{2}$

$$\frac{(\text{RPUT}_{1960})}{\text{MTWNAPT}_{1960}} = \frac{(\text{RPUT}_{1960})}{\text{MTWNA}_{1960}} = 1.9267$$

$$\frac{(\text{RPUT}_{1970})}{(\text{RPUT}_{1970})} = \frac{500}{\text{MTWNA}_{1970}} = 1.8212$$

The decline in this ratio is indicative of the long run decline in the use of public transportation for purposes other than travel to work. Given the post-war migration away from the central cities where most public transportation is located, this is a plausible result.

This ratio was then linearly interpolated between 1960 and 1970. (RPUT/MTWNAPT₁₉₇₀ - RPUT/MTWNAPT₁₉₆₀) = ~.61055

10

Thus the interpolated ratio declined by .01055 per year, which implies an increasing <u>rate</u> of decline. This process was extrapolated backwards in time to 1947 using the same constant difference. The results are seen in

 $\frac{1}{2}$ Unfortunately the question on travel to work was not asked in the 1950 census, so that only two points of comparison exist.

Al-66

Table Al-46, page Al-137 .

The logical limit in the fall of this ratio must be substantially above unity, since a value of unity would imply that public transit was used only for travel to work. It also seems likely that the process which has heretofore led to an increasing rate of decline in this ratio, may now have levelled off as it begins to approach the effective limit of its decline. Therefore a constant rate of decrease equal to the compound rate between 1960 and 1970 was assumed for the period 1971 to 1975. This rate was -0.56%. The resulting series of ratios (RPUT/MTWNAPT) were used to interpolate MTWNAPT by the following formula:

 $MTWNAPT = \left(\frac{RPUT}{500}\right) \left(\frac{1}{RPUT/MTWNAPT}\right)$

The interpolated series is again shown in Table Al-46. This series declines steadily over most of the period as it should given the behavior of RPUT. This decline is less than proportionate to the decline in RPUT since the reciprocal of RPUT/MTWNAPT is rising due to the decline in ridership for reasons other than travel to work. MTWNAPT does, however, begin to rise in 1974 and '75 due to the rise in RPUT caused by the addition of new rapid transit systems in Washington, D.C. and San Francisco. This seems a reasonable result.

The other component of MTWNA, MTWNAOTH, was derived by interpolating and extrapolating its relationship to total employment (NEHT) in

the two census years.

 $MTWNAOTH/NEHT_{1960} = \frac{MTWNAOTH_{1960}}{NEHT_{1960}} = .23535$ $MTWNAOTH/NEHT_{1970} = \frac{MTWNAOTH_{1970}}{NEHT_{1970}} = .13124$

The interpretation of these ratios is more direct than in the case of RPUT/MTWNAPT. Here we may say that in 1969, 23.5 percent of workers travelled to work by means other than autos or public transportation, whereas only 13.1 percent did the same in 1970. This decline of 10.4 percentage point is due mostly to the decline in persons who worked at home, which fell by 42.4 percent, and those who walked only, which fell by 11.3 percent. This decline is indicative of the same trends as in the case of RPUT/MTWNAPT, namely migration to surburban areas.

Using the same method of linear interpolation for the years prior to 1970 as we did in the previous case, we obtained a constant decline in the ratio of .01042.

MTWNAOTH/NEHT1970 = MTWNAOTH/NEHT1960 = .01042

10

Though this difference is smaller than in the case of RPUT/MTWNAPT, it represents a higher <u>rate</u> of decline with a faster acceleration. This more

ŧ.

rapid rate is easy to justify when one thinks of the rapid disappearance of "mom and pop" stores where mom and pop lived upstairs, and the end of factory neighborhoods where the employees lived within walking distance to work.

A constant rate of decline in this ratio of -5.7% was used for the years 1971 to 1976. In this case the stabilization of the decline seems even more appropriate than in the last, since the changes which led to the decline of this ratio have probably had their largest impact already, and the ratio has become rather small (see Table Al-47, page Al-138).

The interpolation of MTWNAOTH is then the result of the following formula:

MTWNAOTH = (MTWNAOTH/NEHT) (NEHT) The results are presented in Table Al-47. This series shows a large and rapid decline over the period, which is the required result. Some minor variations around this declining trend are caused by the cyclical movements of total employment. This result is also desired.

A.1.4.14 METROPOLITAN POPULATION

and a set of the second was a stand of the second second

The percent of the population in metropolitan areas was found to have a significant impact on desired stock. For the cross-sectional data this index could be constructed fairly straightforwardly by collecting population for each SMSA and all fractions of SMSA's (where SMSA's cross

state lines) within each state from Current Population Reports estimates of the population of SMSA's and counties by state. $\frac{1}{}$ These SMSA populations were then summed to get total population in SMSA's by state. The index of metropolitanization was computed by calculating the percentage of each state's total resident population that resides in SMSA's.

The metropolitan index time series was available in satisfactory form from 1970 onwards. The intercensal estimates of NPMET prior to 1970 were interpolated by assuming a constant compound growth rate between each census year. This interpolation was done because Census Bureau estimates do not exist for all years, and because those that do exist were not revised to reflect decennial census results.

The first step in the interpolation procedures was to compute the compound growth rates for the SMSA population:

> NPHETNUM₁₉₆₀ = NPMETNUM₁₉₅₀ $(1+r_1)^{10}$ NPMETNUM₁₉₇₀ = NPHETNUM₁₉₆₀ $(1+r_2)^{10}$ NPMETNUM = U.S. population in SMSA's r_1 = constant compound growth rate 195-1960 r_2 = constant compound growth rate 1960-1970

The above equations were solved for the growth rate r1 and r2, and these

1/U.S.Bureau of the Census, Current Population Reports, Series P-26, Nos. 52, 55, 56, 57, 59, 60, 61, 67-72, 74-78, 80-93, and series P-25, nos. 527, 530-532, 525.

rates were applied to NPMETNUM₁₉₅₀ and NPMETNUM₁₉₆₀ to obtain the intercensal estimates of NPMETNUM, 1950 to 1970. The solutions were:

 $r_1 = .029$, or 2.9% compound growth rate

 $r_2 = .0213$, or 2.13% compound growth rate

Values for NPMETNUM since 1970 were obtained from various current population reports estimates.^{1/} The complete series is shown in Table A1-48, page A1-139.

The index of metropolitanization then becomes:

NPMET = $\left(\frac{NPMETNUM}{NPR}\right)$ 100.

NPR = U.S. resident population

The index of metropolitanization (NPMET) is also listed in Table Al-48.

1/ U.S. Bureau of the Census, <u>Current Population Reports</u>, Series P-25, Nos. 618, 536, 505.

TABLE A 1-1

FORMAT FOR DOMESTIC CAR IMAGE FILE

4 Cards Per Logical Record

Columns	Symbol	Description
1-2	YEAR	2 digit year code (1974 = 74)
3-6	MMMB	6 digit manufacturer make, model, and body style code
9	CRDNUM	Card Number = 1
10	CLS9	l digit, 9 category classification code
17-12	CLST	2 digit transportation class code
13-14	CLSPRM	2 digit primary classification code
15-16	CLSSEC	2 digit secondary classification code
17-24	IREG	Up to an 8 digit number giving number of registrations before Oklahoma correction
25-32	IREGOK	Up to an 8 digit number giving number of registrations after Oklasoma correction
34 - 36	AUTOW	Weight of optional automatic (XXX)
37-39	AIRW	Weight of optional air (XXX/.)
41-72	NAME	32 character description of car (Alphanumeric)

A1-72

TABLE A 1-1 (Cont.)

Card 2

Columns	Symbol	Description
1-2	YEAR	2 digit year code (1974 = 74)
3-8	MMB	6 digit manufacturer, make, model, and body style code
9	CRDNUM	Card Number = 2
10-14	PBASE	Base price (XXXXXA)
15-19	POBT	Installed options value (XXXXXA)
20-24	PB+0	Price including installed options (XXXXXA)
25-29	PTRN	Transportation charges (XXXXXX)
30-34	ΡΤΑΧ	State and local taxes (XXXXXA)
35-39	PTOT	Total delivered price (XXXXXA)
40-43	MPGCA	Average city MPG (XXAXX)
44-47	MPGHA	Average highway M⊬G (XX∴XX)
48-51	₩B	Wheelbase (XXXAX)
52-55	OPTWGH	Weight of all options (XXXX/.)
56-59	CURBA	Average curb weight (XXXX/)
60-63	DISPA	Average displacement (XXXAX)
64-67	FRACT4	Fraction with 4 or less cvlinders (XXXXX)
68-71	FRACT6	Fraction with 5-7 cylinders (XAXXX)
72-75	FRACTE	Fraction with 8 or more cylinders (X:XXX)

A1-73

TABLE A 1-1 (Cont.)

Card 3

i

Columns	Symbol	Description
1-2	YEAR	2 digit year code (1974 = 74)
3-8	MMMB	6 digit manufacturer, make, model, and body style code
9	CRDNUM	Card Number = 3
10-13	AUTOF	Fraction with auto (XAXXX)
14-17	ORF	Fraction with overdrive (XAXXX)
18-21	AIRF	Fraction with air (XAXXX)
22-25	PSTF	Fraction with power steering (XAXXX)
26-29	PBF	Fraction with power brakes ($X_A X X X$)
30-33	FMF	Fraction with AM-FM radio (X/XXX)
34-37	AMF	Fraction with AM radio (XAXXX)
38-41	PSEF	Fraction with power seats ($X \land X X X$)
42-45	PWF	Fraction with power windows ($\chi_{\Lambda}\chi\chi\chi$)
46-49	PBDF	Fraction with optional power (XAXXX) disk brakes with drum standard
50-52	AUTOP	Price of auto (XXXA)
53-55	OPD	Price of overdrive (XXX.)
56-58	AIRP	Price of air (XXXA)
59-61	PSTP	Price of power steering (XXX Λ)
62-64	PBP	Price of power brakes (XXXA)
65-67.	Ews	Price of AM-FM radio (XXX/)
68-70	AMP	Price of AM radio (XXX/)
71-73	PSEP	Price of power seats (XXX Λ)
74-76	PWP	Price of power windows (XXYA)

A1-74

TABLE A 1-1 (Cont.)

Card 4

Columns	Symbol	Description
1-2	YEAR	2 digit year code (1974 = 74)
3-8	MMMB	6 digit manufacturer, make, model, and body style code
9	CRDNUM	Card Number = 4
10	NENG	Number of engine options (1, 2, or 3)
11-14	EIF	Fraction with 1st engine (XAXXX)
15-16	CYL1	Cylinders for 1st engine (XXA)
17-20	DISPI	Displacement for lst engine (XXX Λ X)
21-24	CURB1	Curb weight (excluding options) (XXXX/) for lst engine
25-28	MPGC1	City MPG for 1st engine (XXAXX)
29-32	MPGH1	Highway MPG for 1st engine (XXAXX)
33-3E	Ε2	Fraction with 2nd engine ($X \land X X X$)
37-38	C4L2	Cylinders for 2nd engine (XX%)
39-42	DISP2	Displacement for 2nd engine (XXX/X)
43-46	CURB2	Curb weight (excluding options) (XXXX.) for 2nd engine
47-50	MPGC2	City MPG for 2nd engine (XX/XX)
51-54	MPGH2	Highway MPG for 2nd engine (XXAXX)
55 - 58	EG	Fraction with 3rd engine (XAXXX)
59-60	C4L3	Cylinders for 3rd engine (XXA)
61-64	DISP3	Displacement for 3rd engine (XXX λ X)
65-68	CURB3	Curb weight (excluding options) (XXXXL)
69-72	MPGC 3	City MPG for 3rd engine (XXAXX)
73-76	MPGH3	Highway MPG for 3rd engine (XX4XX)

A1-75

Tura up a

TABLE A 1-2

FORMAT FOR FOREIGN CAR IMAGE FILE

2 Cards Per Logical Record

Card 1

Columns	Symbol	Description
1-2	YEAR	2 digit year code (1974 = 74)
3-8	MMMB	6 digit manufacturer, make, model, and body style code
9	CRDNUM	Card Number = 1
10-11	CODE	2 digit classification code
12	CNTRY	l digit country code
13-14	CLST	2 digit transportation class code
15-16	JRRP	2 digit final classification code
17-24	IREG	Up to 8 digit numbers giving number of new registrations before Oklahoma correction
25-32	IREGOK	Up to 8 digit numbers given number of new registrations after Oklahoma correction
34-36	GASC	Gasoline capacity (U.S. gallons) (XXAX)
37-39	WATC	Water capacity (U.S. quarts) (XXAX)
41-72	NAME	32 character description of car (Alphanumeric)

A1-76

the to

TABLE A 1-2 (Cont.)

Card 2

Columns	Symbol	Description
1-2	YEAR	2 digit year code (1974 = 74)
3-8	MMMB	6 digit manufacturing, make, model, and body style code
9	CRDNUM	Card Number = 2
10-14	PBASE	Base price (XXXXXA)
15-19	POBT	Installed options value (XXXXXA)
20-24	PB+0	Price including installed options (XXXXXA)
25-29	PTRN	Transportation charges (XXXXX2.)
30-34	ΡΤΑΧ	State & Local Taxes (XXXXX/.)
35-39	PTOT	Total delivered price (XXXXXA)
40-43	MPGCA	Average City MPG (XXAXX)
44-47	MPGHA	Average highway MPG (XX/XX)
48-51	WB	Wheelbase (XXXAX)
52-55	OPTWGH	Weight of installed options (XXXXA)
56-59	CURBA	Curb weight (XXXXA)
60-63	DISPA	Displacement (XXXAX)
64-65	CYL	Number of cylinders (XXA)
66-69	AUTOF	Fraction with auto (XAXXX)
70-73	ODF	Fraction with overdrive (X2XXX)
74-77	SHIPA	Snipping weight (XXXXA)

A1-77

- 71 N

2

6 Mart f. att 8 8 3000 CULPEC 10 10 10 5000 CULPEC	1.04 Prime 511C (2 HE F3 2 HE 407532 264300	CIASS	19/2 SURIED	IN DESLENDING ONDER AT NUMPER OF NEW NEETSING Description of ear
SURCHURE (C) SURCHURE (C) SU	101552 101932			
	144300	5.16	100.00	
		10.01	100.00	ENEV VEGA
Sturctione C Construct Construc	12221	15.14	100,00	FURD FINIC STAT MAGN
	201 105	11.57	100.00	ANC GRENLEN
	65074	7.44	100,001	CHEV VEGA STAT WACON
	194621	10 01	100.00	CHEV NOVA
				DI MUDITY VARIANT
	0441.64			
		14.50	00,001	
	964622	1.2.4.1	0.0 0.01	
	0.1.41	1.22	100,00	
	67150	41.4	100,00	PERCENT CUPET
	84948	.14	100.001	PORTIAC VENIUMA
	5 4 4 D Q	9.19	100.00	HORME 1
	Q # 7 5 7	10.5	100,00	MERCURY CUUSAN
	11010	2.04	100.00	CHEV CAMFHU
	15152	2112	100,00	HORNE'S PURLANDUE MAGUN
	25050	1.61	100.00	JAVELIN
	12022	1.51	100.00	DUDGE CHALLENGEN
	22114	1.1	100.00	POWIISC FIRSTED
				PLANNING RANGALIDA
				DIDS CHECA IT MODEL
		5 H ⁰ A		
	061646	19.64	100.00	CHEV CHEVELLE
	08 47 8.1	11.51	100.00	FUHD ERAN TUPINU
	00110	0.0.1	100.00	OLDS CUTLASS
	0.44.4		100.00	BUICH CENIURY / BAVLARM
	004400		100.00	CHEV MUNTE CARLO
			00.001	PONTIAL LEMANS
				DOCC TRUNK CARACT
			100.00	
		10 4	100.00	WEDRIGY MONIECO
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		00.001	FORD 10011NO 446N
	5 2 8 1 1 5 C		100.00	FCRD TDHIND
		H ~ ~	00 001	THEY PUSCHALE BILL TAGN
				MATADOR MATADOR
	21466			DIDDE CONDRET STAR HANG
	8 7 8 7 8			
410-512E 910#1 411-512E 15090 5 9111-512E 7110 9111-512E 1101 11049 1 11049 1				
FULL-512E 15050 5 FULL-512E 15050 5 FULL-512E 21110 5 FULL-512E 15050 5 FULL-512E 15 FULL-512E 15	101.54	10°C	100.00	
	015510	16.79	100.00	CHIV EMPALA
	101 A H B	. U. U	100.00	1 UMD 1 1D
	102101	54.5	100.00	FURD STATIC'S PAGN
	8 C 8 2 8	5.0 B	100.00	CHFJ E2PHICE
		3	100.00	COS JIN UNITED STORE
	10101		106.00	FUNTIAC CATALINA
	104	202	100 00	CHCV STAT MAGN
	23774		100.00	DUICH LESARHS
	40011		100.00	TT AND HIN AND A HING AND A
			00.004	CLDS DELTA HOTALE

~

TABLE A 1-3 (Cont.)

C1314412049																																															
N DESCENDING DADER BY NUMBER OF NEW USCAIPTIUM UF CAR	DLDS DELTA BA	PONILAC CRAND PHIT		DODER FULAKA	PUNITAL CRAND VIII	PLYNUDIN SIAT HAGN	PONITAC STAT MAGN	CHEV REL AIR	PLYHOUTH CHAN COUPE/SEDAN	FORD LTD BROUGHAM	CTRASLEN REPORT COSTON		DODGE SPOHISMAN STAT MGN	BUICK CENTURIUN/LESABRE	AFEASSADDR	MENCUAY STAT MACON	PERCURY PUNITHEY	MENEGHT MONIEMET LOSION			STORE MOMARD	FOND CLUB WASCH	FORTIAC CATALIVE BROUGHAM	FLYHOUTH FURY 15	PODGE STAT HAGN	CHEV NOVA SPORTVAN	CHEV BISCANNE		C 115 C R t R	CADILLAC DE VILLE	RUICH ELECTRA 225				LINCOLN CUVI	CAPILLAC LLDDRADO	rujce rivieva Autorio al a successionede	ENKIGLEM NEF TOKEN BAUDUNAN Distriction data token		CALV CONTINC	CADILIAT FLETIMUCO 60	CHRYSLER STATIUN WAGN	CHWYSLER KEW YORKEN	CHRISLEN INFIRIAL	CADILLAC CALAIS	CADILLAC 754CH45515	CHN13EEM 200 EVI POULS
1472 SURTED 1	100.00	110,03	100.00	00.001		00.001	100,00	100,00	100.63	100,00	00.001		100.00	00.001	100,00	100.09	100.00	00.071				00.001	100.00	100,00	100,00	100.00	100.00	100.001	100.00	100.00	100.00	100.00			100.00	100.001	100,00	100 00	00.001			100.00	160.00	100.00	100,00	100.00	130.00
IC CAPS IN TH CLASS	3.05	2.87	\$1,5	29.5		1.8.1	1.24	1.20	1.16	1,14	21.1		66.0	5 B . C	0.49	0.13	0.75	0.15		C 4 4		24.0	0.59	0.58	0.57	0.5:	50° 50	A 2 8 0	3,15	19.94	17,90	12.12	87°C	100	8.19	45.4	5. 5.2	1.13	10.61			10.1	1.82	1.53	C. 74	2#*0	B
LASS FOR PINES1 NEA FEG 2	104724	97451	54655	21428		20102	9/0/9	40PD 5	キエー・コ	147.25		1000	11745	14218	14205	250KA	25953	04062	2 4 2 4 2	110/2	11410	21287	20130	Shual	10101	20041	15789	4100	c115	184145	600691	120010	21445		95120	60%37	40101	ぐりゃりぐ	01162	91.012		20491 20491	11260	1 HUB	6449	1008	\$U.9
87 3121 C	10040	15070	20000	351.0	01010	16028	15071	13070	32070	21120	1010	0.0.1		11040	05010	24071	00002	24059	52020		1010	<501C	15100	32130	14165	1 30 4 2	15140	a10%1	1110.0	02021	04013	14069	05112	02022	22010	12050	11040	31050	11071	11120	12021		1000	0/015	12010	12040	31090
ISTING IN NAMENLATES FAN LASS	FULL-512F	1016-5176	1066-5176	1011-3125		PULL - 31/2	FULL-3127	F ULL - 51/L	1 ULL -51/L	7 ULL - 51/1	FULL - 31/L			1011-5128	FUAL-5128	1 466-5121	1 ULL-512L	f ULL-312L	r ULL = 317F	f ULE = 5 [7 E			1011-5120	P1111-512F	1 ULL = 51 2 E	3216-3136	1111-2126	P 11.L + 512E	111F-512F	4411817	LUIINY	LUFURY	L unital V	A MUSA T	1 11 11 1	A 10 11 1	ARGNEL	LUrnay	LUCINY		1 1 1 1 1 1 1	1 11 11 11 1	LI1111	- Arista -	4 11 2 2 1 1	LU 4114 V	1 0104

A1-79

Contraction of the second

Y

a the state

İ

100

ł

NEW REGISTHATTONS TADLE A 1-4

7

34

IG OF NAMEPLATES Can Class	10113 OI	CLASS FOR LOUFIC NIN RECS	L OF CLASS.	1972 SUHIED IN 1 IN CLASS	DESCENDING URDER OF N DESCRIPTION OF CAN	UMBER OF
SUILCIMPAC1	a10000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	32,39	100.00	VOLKSMAGEN	
SUNCOMPACT	000170	510412	20.51	100.00	107014	
SUNCIMPAC 7	000150	117-129	11,70	100,00	DATSUN	
SURCHIPAC 1	220000	HJS/H	• 45	100,00	[22:43	
SUBCOMPACT	200005	45554	e.n.3	100.00	UPEL	
SUBCINFACT	540000	57296	02.0	100,00	FIAT	
SURCHIFACT	591000	20100	3,57	100.00	21.4 Z D 4	
SUBCOMPACT	010001	46345	5,42	100,00	VOLKSHAGEN ST WGN	
SUBCUMPACT	230000	5371.5	2,47	100.00	CUDGE CULT	
SUNCOMPACT	682000	- Inels	2, 52	100,00	NC NC	
SUBCUMPAL 1	615000	22601	1,67	100,00	H4H01H1	
1 3 MERCHARDINS	550000	19049	1.00	100,00	HUNDA MUNDA	
SUBCUPPACT	441000	15140	1,16	100,00	SUHARU	
SHUC OMPACT	250000	12570	1.06	100,00	PLYMOUTH CRICKET	
5118C114P4L	600009	11511	0,83	100.00	AFNAULT	
SUBFORPACT	601000	10,201	0,05	100,00	NILSON	
SUJC UHPACT	671000	436	0,05	100.00	51HL A	
SURCOMPACT	492600	01	0000	100,00	NSU PRINE	
1049400	000000	5 50 4 7	51,61	100.00	017 A D	
1 DA 4PUD	000105	2845	21,76	100,001	Idny	
COMP &CT	¢51000	1001	13,57	100,00	3 A A 19	
CUTPALT	6.20000	5468	9.67	100,00	PLUGED1	
CIMP &CT	000015	1001	1,95	100.00	CITROEN	
CIMPACT	684000	10 P	c • 0 2	100.00	RUVER	
LUXURY	291000	80448	44,41	100.00	MENCEDES RENT	
LUXURY	650000	50000	21.19	100,00	PURSCHE	
LUXUHY	500000	10.01	11.18	100.00	大大日	
LUXURY	673000	Soul	5.07	100.00	JACUAR	
LUXIIRY	410000	2225	2,56	100,00	ALFA RUMEU	
LUXINA	610005	6521	1,03	. 100,00	PARTERA	
LUXURY	910015	0 < 0	1,09	100.00	10103	
LUKURY	761010	164	00.00	100,00	HISC [MPORTS	
LUXURY	641000	644	0,10	100,00	RULLS RUYCE	
LUXURY	5 30000	81.2	0,30	100,00	71 RAAR 5	
LUXURY	440700	11	0,01	100,00	ASTON MARTIN	
LUXURY	\$12000	-	00.0	100.00	BENTLEY	

1

Transit Service BY CLASS FOR DOWLSTIC CARS

.

0.10 17.20170 0.175 201970 0.00 914874 100.00 9175 1.17 7.0918 0.00 0.10 200.00 9110102 100.00 9110102 1.17 7.0918 0.00 0.00 100.00 9110102 100.00 9110102 1.10 7.17 7.197 7.18 711144 100.00 9110102 1.10 7.10 7.18 7.18 7.18 7.197 7.197 1.10 7.11 7.19 7.1111 7.11111 7.11111 7.11111 1.10 7.1111 7.11114 7.11114 7.11114 7.11114 7.11114 1.10 7.1111 7.11114 7.11114 7.11114 7.11114 7.11114 1.11 7.11114 7.11114 7.11114 7.11114 7.11114 7.11114 1.11 7.11114 7.11114 7.11114 7.11114 7.11114 7.11114 1.11 7.11114 7.11114 7.11114 7.11114 7.11114 7.11114 1.11 7.11114 7.11114	בי היאר מידע היאר אונער אין	алда Таньнарал це занане полный хе 140 0.74 16-1627 5	s rseen branch as a high and a seen a se	Tattarty 125 25 Ultrative 25 25 Ultrative 25	101	Г 1 АНЕ 2 6 6 4	FULL 51 NUMBER 1320264	126 254246 21,97	001061 8 10/00 8 10/00	XSHAHE A.15	466.664 167241 3167241	5555 154845 100,00	5157241 107772 1157415
7.95 7.95 7.95 9.00 5.15 9.00 6510102 100.00 6510102 650102 6501102 6501102 100.00 6510102 100.00 6510102 100.00 6510102 650102 6501102 6501102 6501102 6501102 6501102 6501102 6501102 6501102 6501102			407	0.42	I upwiel	u 4 , 10	1520170	93,75	227378	6.60	419474?	160.00	5112113
55000 55002 55002 55002 550000 100.00 100.00 50000 57704 50002 55002 57001 100.00 100.00 57001 50000 57704 500 500 500 500 500 50000 100.00 57000 5000 5770 500 500 500 500 500 50000 100.00 57000 5010 501 500 500 500 500 500 50000		1.11.	514	11.54	2448 642	\$1,75	1945136	20, 50	244352	5,15	8826641	100.001	47.75C ¹ 1
26040 0.52 71711 55,45 17115 55,45 100,00 55,75 31116 1.73 57,175 1.4 104665 5,47 9124011 100,00 57,75 4101 1.75 57,715 57,715 57,75 100,00 57,75 7101 1.75 77,75 10,00 57,75 100,00 57,75 7101 1.75 77,75 10,00 57,75 100,00 57,75 7101 1.51 77,75 10,00 57,75 100,00 57,75 7101 1.51 77,75 10,00 57,75 100,00 57,75 7101 1.51 74,75 10,00 57,75 10,00 57,75 7101 1.51 74,75 10,00 57,75 10,00 57,75 7101 1.51 170,00 10,00 57,75 10,00 57,75 7101 1.51 74,75 10,00 10,00 57,75 10,00 57,75 7101 1.51 74,75 74,75 74,75 74,75 74,75 74,75 7111 74,75 74,75 74,75 74,75 74,75 74,75 74,75 711	5	: ? ? :	476	1,50	5114111	54. IA	2529379	00.00	250025	4 0 11	4510102	100.001	6310159
31/16 1/2 2/2/316 55.03 1/2 1/2/2017 100.00 41/201 7/2/201 1/1 1/1 2/2/310 55.04 1/2/401 1/2/2017 1/00.00 7/1/201 7/2/21 1/1 1/1 1/1 2/2/310 55.04 2/2/515 1/1 1/2/2017 1/00.00 7/1/201 7/2/21 1/1 1/1 1/1 1/1 1/1 1/1 1/2/2017 1/00.00 7/1/201 7/2/21 1/1	лu.	5 Y (049	61.0	2112145	12.22	5021101	57.92	261967	5, 31	5040043	100,00	102001
9764 1.0 5.1750 5.45 5.10050 5.47 5.00050 5.47 5.00050 10.00 5.475 10.00 5.475 5.00050 5.00150 5.01157 5.00150 5.00150 5.00150 5.00150 5.00150 5.00150 5.00150 5.00150 5.00150 5.00150 5.00150 5.00150 5.00150 5.01157 5.01157 5.01157 5.01510 7.115 5.01757 5.01510 7.115 5.01751 5.0150 5.01510 5.01100 5.01175 5.01100 5.01117 5.01117 5.01117 5.01117 5.01117 5.01117 5.01117 5.01117 5.01117 5.01117 5.01117 5.01117 5.01117 5.01117 5.01117 5.01117 5.01117 <t< td=""><td>î.</td><td>1.0</td><td>r 1 6</td><td>6.6.0</td><td>0150222</td><td>51.19</td><td>1520109</td><td>34,A1</td><td>257187</td><td>A.23</td><td>4129017</td><td>100.001</td><td>4120214</td></t<>	î.	1.0	r 1 6	6.6.0	0150222	51.19	1520109	34,A1	257187	A.23	4129017	100.001	4120214
1.11 1.11 1.11 55.40 10.410 55.40 10.410 55.40 10.410 55.40 10.410 55.41 10.410 55.41 10.410 55.41 10.410 55.41 10.410 55.41 10.410 55.41 10.410 55.41 10.410 55.41 10.410 55.41 10.410 55.41 10.410 55.41 10.410 55.41 10.410 55.41 10.410 55.41 10.410 55.41 10.410 55.41 10.410 55.41 10.410 55.41 10.410 10.410 55.41 10.410 55.41 10.410 55.41 10.410 10.410 55.41 10.410 10.410 55.41 10.410 10.410 10.410 55.41 10.410 10.	5	6.	154	در. ا	2217501	5.6.34	2043477	34.09	104665	5,42	5710028	100,00	3100115
1227 1.00 1.00 1.00 1.00 0.00 1.00 0.00	22	P. 4.0	1.40	1.15	412444	50, 10	1673120	05.51	200025	5.03	5502565	100.001	5360355
Fnix1 1 <td>c</td> <td>125</td> <td>142</td> <td>- C - 1</td> <td>1 6 11 5 1. 1</td> <td>55.45</td> <td>2756155</td> <td>30.75</td> <td>134616</td> <td>4 • 7 D</td> <td>1111443</td> <td>100.001</td> <td>1111745</td>	c	125	142	- C - 1	1 6 11 5 1. 1	55.45	2756155	30.75	134616	4 • 7 D	1111443	100.001	1111745
Involu 1,5 () 0,1 17000 1,0 517535 100.00 517535 Involu 1,0 1,0 1,0 1,0 1,0 1,0 0,0 <		202	1.1	1.10	C140413	59,54	2600101	32.62	387414	53,4	5r57061	100.001	5451041
1/9 1/1/1 1/9 25,94 100260 7,95 10020 125977 100,00 425977 100,00 4215977 100,00 4215977 100,00 4215977 100,00 4215977 100,00 4215977 100,00 4215977 100,00 4215977 100,00 4215977 50,00	•	2845	11.5	1.53	1-04444	61.74	1704542	29.51	216534	7,21	5175515	100.001	51122125
G(1/2) A, 1 G(1/2) F, 1 F, 1 F, 1 F, 1 F, 1 F, 1 F, 1	-	1.01	5 n N	50.5	1098022	62°04	2104212	25,94	340260	1.96	1465150	100,001	4215991
19/11/1 17/11 24/50 25/51 7/16 507765 100.00 5/2761 19/11/57 17.4 20.5 17.5 100.00 5/2762 10.30 17.5 100.00 5/2761 19/11/57 17.4 17.4 17.5 17.5 17.5 100.00 5/2762 19/11/57 17.4 17.1 27.116 17.1 17.5 17.1 17.1 19/11/57 17.4 17.1 17.1 17.1 17.5 17.1 17.1 10/11/5 71.16 17.1 17.5 17.1 17.5 17.1 17.5 12/11/51 17.1 17.5 17.5 17.5 17.5 17.5 17.1 17.1 12/11/51 17.1 17.5 17.5 17.5 17.1 17.5 17.1 17.1 12/11/51 15.1 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.6 17.6 17.6 17.7 17.5 17.5	2	612	112	3.45	2284823	51,513	9035291	24,81	917512	80.8	1409105	100.001	1-10-1175
714/57 10,400 10,400 15,84 16,917 30,45 419014 7,55 507515 10,000 559170 1241 27175 10,13 1056355 47,76 510510 7,15 559703 100,00 559170 1241 7,11 27177 11,15 251767 11,12 21,109 100,00 7,112 124104 16,11 27,7554 47,75 51,019 100,00 7,112 11109 100,00 7,111 124107 15,11 27,110 27,554 47,75 51,914 7,112 11109 100,00 7,111 124107 15,11 7,112 21,407 6,107 51,114 10,100 7,114 10,100 7,114 10,100 7,114 10,100 11,156	2	1974		17.11	2031461	00,54	1773067	24,50	035321	7.16	4011045	100.001	AC17345
12011/0. 12.00	÷	51.6	157	18.00	1962291	15.84	1467572	30,25	913914	1,56	5976125	100.001	5-141-5
1050000 10000 700000 700000 700000 700000 700000 700000 700000 700000 700000 700000 700000 7000000 7000000 700	-	12-01	100	50.01	2152014	12.11	2299137	34.04	461427	7.13	6559705	100.001	6234703
[2016.44 [5,1] 57,574 67,16 55,214 7,02 756070 75107 11.1071 15,11 21,41 25,0070 51,93 50,003 51,94 70,00	4.1	10501	127	14.45	2441.12	61.01	\$965355	d2,18	510518	7,12	7171093	100.00	1171545
1.1.1071 15.11 2011122 25.02 4100010 51.93 6.00304 7.55 8104477 100.00 812447 1.1.10142 1.1.1012 25.02 410011 27.1 612120 8.7 757701 100.00 717121 1.1.1012 1.1.1012 21.64 510707 21.51 617379 8.7 757701 100.00 717121 1.1.1012 1.1.212171 27.06 59.17 510799 8.7 757701 100.00 717121 1.0.1111 7.1 77.1 77.1754 47.57 75.1759 8.7 75.17261 100.00 711627 1.0.1111 7.1 7	5	12010	48.4	10.64	0218107	24.45	1575264	c1,16	532141	7.02	1291019	100.001	7591014
Inchiel Inchiel <thinchiel< th=""> <thinchiel< th=""> <thi< td=""><td>5</td><td>1111</td><td>110</td><td>12.21</td><td>111102</td><td>23.02</td><td>9',00707</td><td>51,93</td><td>660304</td><td>7,55</td><td>1900014</td><td>100,00</td><td>8144491</td></thi<></thinchiel<></thinchiel<>	5	1111	110	12.21	111102	23.02	9',00707	51,93	660304	7,55	1900014	100,00	8144491
1(1) 1(1) 1(1) 21,64 5,64	5	101	123	11.14	0020112	20.02	4104011	11.00	674704	0.08	0350365	100.00	13-0345
10.306.00 17.00 27.00 19.14521 46.70 75.709 8.95 6.41007 100.00 70.162 10.41450 17.4 24.90 9.11 17.4 10.400 10.400 10.400 10.4146 24.5 11.7 24.90 9.11 17.4 11.7 10.400 11.7 10.414 21.5 11.7 24.5 31.60 8.4 11.7 11.7 11.7 10.414 11.7 11.7 24.5 31.60 10.4 10.4 10.4 10.4 10.401 11.7 11.7 11.6 31.6 31.6 31.6 10.4 10.4 10.4 10.401 11.7 11.4 10.4 10.4 10.4 10.4 10.4 10.4 10.401 11.7 11.4 10.4 10.4 10.4 10.4 10.4 10.4 10.405 11.7 24.6 10.6 10.7 10.4 10.6 0.4 10.4 10.405 26.5 25.0 26.2 26.0 46.1 10.6 0.4 10.4 10.405 27.4 10.6 27.6 10.6 10.2 10.4 10.6 0.4 10.405		11020	: 10	11.37	1.011021	21.64	3689925	e, e, e	619579	8,97	1024721	100.001	1229651
ікшняль 10,00 галана 24,00 датта 45,00 В31005 9,91 ВА84907 100.00 Глана 12073ни 25,00 120922 25,012 07,06 50,6227 0,19 715724 100.00 715724 14.011 10.50 120020 25,61 316297 39,75 655833 10,26 0191013 100,00 854561 15.011 10.65 линизи 24,65 3156297 37,62 955833 10,26 0191013 100,00 854561 15.0411 10.65 10.00000 85457 37,62 95582 10,40 8056392 100,00 84450 15.0412 20,20 24,01 30,81 185525 25,03 65004 8,72 7351996 100,00 7410 15.0455 25,01 65004 8,72 10,40 10,20 45196 100,00 7410	91	16246	646	1.0.1	118144	27.04	1934521	44.74	753704	8.95	2404163	100.00	8416035
[ivijum] jiii] iii] iiii] iii] iii]	ć	14045	5.00	1.5	21101202	20.04	5047754	45°43	R31005	10.0	R 184401	100.001	10:0014
[< <p>[<</p>	-	11041	3 # 14	2 3 . 1 .	112011	21.12	2104262	00, AB	506227	n, 19	7157203	100.00	115-243
Т. салті II. П. П. П. П. П. С. 10,00 К. С. 10,45 П. 10,45 П. 10,00 К. 19.40 П. 1. салті П. П. П. 10,00 К. 10,00 К. 10,00 4.10 П. 1. с. 20,20 П. 2. салті 10,20 4.100,00 7.110 П. 1. с. 21 г. с. 21 г. 2. салта 10,51 10,522 25,03 6.54044 А. 7.5 7331946 100,00 7.1104	÷	.0-51	110	11.50	he hand I	20.00	3116247	39,75	855833	10.26	0145015	100.00	8135758
104447 24.20 24441 25.45 3105302 32.25 902414 10.20 4531042 100.00 74194 154445 26.51 2246440 30.61 1035225 25.03 654044 8.72 7331946 100.00 74194	1	27.1	111	29.44	noluuti	24.03	5370332	37,42	934427	10.45	8058342	100.001	40145114
150100 20125 20 0000 10000 10000 2500 050000 0.72 7331946 100.00 75194	1	1 7 5 4 5	147	62.05	8210/24	25.65	2005015	\$5.28	902A19	10,20	463:0A2	100.001	9~116-6
		15015	(1)	15 0.	0144522	30.61	2552501	25,03	A54044	6,72	1331946	100.001	1111960

Reproduced from best available copy.

A1-81

TADLE A 1-6 Harkeit Shawf hy Class for toreigh Cars

.

Reproduced from best available copy.

	4-11311115	ACT	CIMPACI	_	INIE HHIDINI	FULL SIZE	LUXURY		ALL CLA	3363	CONTHINL
41 AW	Startes R	TSHAKE	MINHAR W	XSHANE	NUMBER ZSHARP	NUMBER ISHARE	NUMBER 23	BHARE	NUMB1 N	25H4R2	NUMHER
1013	0	0.0	9	0 0	0 0	0.0 0.0	0	0.0	•	0.0	•
1748	14172	R7. F4	2.15	2.06	0 0	0.0	1629	01.01	16133	100,00	16133
6 5 4 1	51611	20.14	-	0.07	0.0	0.0	305	2,49	12251	100,00	12251
1250	2255	14.04	151	2.17	0,0	0.0 0	1152	A.15	16336	100,001	16535
14.61	19008	86.55	575	2.5n	0.0	0.0 0	2330 1	11,17	20300	100.00	20810
6561	20285	R 2 . 5 7	316	2.45	0 0 0	0.0	e225 1	14,58	29371	100,001	29117
1455	22501	17.64	602	2 93	0 0.0	0 0 0	5611 1	9.57	20461	100,001	28961
1954	27189	63.00	200	1.55	0 0 0	0.0	4918	5,09	12599	100.001	32549
2201	11111	67.67	124	52.0	0°0 0	0.0 0	6950	1. A9	58445	100.001	5H4F5
474.1	A 1065	89.60	4847	6.94	0 0.0	0.0	10274 1	0.46	98187	100,00	98187
1501	176495		16706	8,12	9 0 0	0.0	13546	4,55	206627	100,001	206827
1958	12158	60.98	31504	8.32	0 0	0 0 0	25155	6.70	370517	100,001	370517
222	526813	86.44	55185	9.09	0 0 0	0.0	21215	4 47	609539	100,00	015009
1440	027451	84.10	93631	8.75	0.0	0.0	27693	5,55	4987AS	100,00	9481950
10.01	124046	61.22	20051	7.41	0.0	0.0	50002	6,34	378422	100.001	578622
2451	243010	P. 5. 4 4	23841	7.04	0 0	0.0	22285	6.57	19160	100,001	339160
1961	502:11	81.48	22557	5.79	0 0 0	0.0	22085	5,73	385624	100,001	5 85620
0401	01112	12.04	24155	5.53	0 0 0	0 0 0	24055	6.97	984151	100,001	151040
2461	145015	40.55	24603	5.21	0 0 0	0.0	25269	6, 43	569215	100,001	569415
1.1.1	4458N2	50.68	59051	5,84	0 0	0.0	31150	9.13	650123	100,00	458123
1401	AA7504	84.21	52780	6.27	0°0 c	0.0	39088	5,02	114220	100.001	19220
191.8	PULLAN	49.55	56500	5,74	0 0 0	0.0	65629	9,71	785767	160,001	965767
1964	040150	00.20	51730	5.04	0 0 0	0.0	80660	4,10	1061617	100,00	1061617
1 4 7 1	A10.001	A. V. H	67666	5.00	0 0	0 0 0	61529	90° S	1230751	100.00	1250761
1 1	1127226	10.01	84093	5,99	0 0	0.0	71074	4.78	1927613	100.001	1037615
		31.16	101304	0.01	0 0	0.0	85835	19.2	1529402	100.001	1527402
1271	144.44	64.17	828066	7.48	0.0 0	0.0	95464	5,55	1719913	100.001	1165121
9/1.1	1110211	11.04	121455	10.8	0.0	0 0	91010	6.39	1369148	100.00	1:67143

A1-82

Market Briter Bark

TABLE A 1-7 Mauklt Shauf By Llans For 101al

a mener have a start of the sta

				1	IANKET SHAF	יר שי כוי	A35 FOR 10	14L CA	H 3				
	SURCED4P	46.1	CUMPAC	-	INTERNI DI	1456	101	126	LUXURI		ALL CLA	5365	CONTROL
VI AN	11UNN P	2 SHARE	NUMBLA	ESHARE	H Butulta	25HARE	NUMMEN	XSHARL	NUMHER	Z SHARE	NUNDER	X SHARE	N UNH! H
1947	15914	0.50	2 5900	0.70	1405424	\$0.64	1329268	41.97	194700	6.15	1157211	100.001	3147251
948	2151.5	1.13	21790	0.62	1478403	60° NB	.1520170	#1,55	231027	6.62	3490952	100,001	3990952
4041	01172	10.0	29547	n . 59	21,41 0 5 2	55,61	1995136	40,20	200657	5,10	4815392	100,001	6133192
17.0	263.23	0.78	30281	0.54	3455977	54.64	2529374	39,78	256929	e. 0.5	6326019	100,00	6326435
14.61	121640	2.19	26571	0.53	2732146	55.74	1911245	37.11	2619191	5, 13	5060903	100,001	\$050405
244	10.1786	05.0	20410	1.01	222 10	10.15	152000	16,55	261412	6.29	e158399	100,00	9158370
1.453	A2324	00.1	61413	1.04	321111	50.00	2003071	54,50	315274	5,04	5150449	100,001	5730969
1750	24312	0.51	61229	1.15	3265412	99,99	1893124	34.20	20094	9,15	5535069	100.001	3554460
1955	51114	0.12	12356	10.1	1001002	\$5.00	2156153	38,00	306566	a. n 3	7169908	100,00	1169706
1956	A 2051	1.19	73668	1.24	1087754	', R. 60	2000101	32,00	398088	6 6R	5955243	100,00	59552aR
1.5.51	202751	2.95	105310	1.76	3566011	14.95	1703392	28.09	a 3 0 1 3 0	7,19	5982892	100.001	2082805
851.1	104241	7.82	10041	5.46	2454869	37,05	1109232	25,65	365615	7, 96	9654519	100,001	a65a51a
6.101	422444	11.01	561591	A. 42	5218255	a1.10	1452347	20,10	469007	7.71	6026500	100.001	6026500
0471	MUDII	11.74	1026159	10.00	2051667	57.20	1795001	27,26	465014	7.04	6516650	100,00	6516650
1.1.1	115211	12.21	1011619	17.31	1262911	52.55	1647 192	29.43	438013	7,48	5844147	100,00	5854747
1945	671648	10.05	1505627	19.82	2152059	10.73	2299337	51,10	504212	1.27	6938865	100,001	6938463
1.953	111504	02.6	1056984	11.93	220,14.	27.10	3046055	40°40	532605	7,05	1556717	100,90	1556718
1991	201154	2.1.2	1284575	15.27	C110102	50.05	3515259	00.33	556219	06°9	8065150	100.001	00651500
51.11	123916	11.1	1350710	19.50	2013122	14.15	4540707	48.75	695553	7.36	9113912	100,001	5125156
14.46	611115	1.52	1300770	14.95	2113209	29,19	4101031	e5,55	105454	7,84	9000488	100,00	9008485
1.41.1	11/110	M. 52	844406	17.24	1741747	21,00	3609925	24.15	710057	09 0	8357421	00.001	1202518
202	114568	2.53	1045189	1'1, 90	2118155	29.23	1250208	98.89	000175	8,51	9403862	100,001	2940 2465
0401	26.2264	10.17	1702516	18.02	2051042	21.73	3847954	ac.75	890903	4.53	9906529	100,001	4846520
0/1.1	1232215	19.75	1777914	21.14	105001	21.05	2424012	34,65	608506	7,73	0388204	100,00	8555564
1163	2031876	20.93	149007	11.68	1869474	17.22	5516277	51,73	926912	9,93	9A30626	100.001	9830626
101	2205,044	.1.00	1100155	16.21	2104174	10.01	1170510	52,19	1021662	9.74	10487194	100,00	10111991
1101	1021142	10.15	20181055	14,35	1110102	21.76	3105902	21,36	1074278	9.50	11350995	100.001	11550445
1114	22 17878	25,70	1625871	10.69	1258110	39,46	1835225	21.09	741450	8,52	8101074	100*00	6701070

AJ-83

.

Reproduced from best available copy.

TADLE A 1-B U.S. SHARE OF NEM REGISTMATTING BY CLASS

1

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	000000 00000 000000 000000 000000	100,00	100.00	102.00
	888 88 88 89 89 89 80 80 80 80 80 80 80 80 80 80 80 80 80	2000 2000 2000 2000 2000 2000 2000 200	0000 0000 0000 0000 0000 0000 0000 0000 0000	00 00	0, 00	
	4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	2 C C C C C C C C C C C C C C C C C C C	100.00	100,001	17,57	05°66
	70, 18 75, 12 61, 12 6, 23 6, 23	90903000 22003000 2003000 2005000 2005000 2005000 2005000 2005000 2005000 200500000000	100.00	100,00	99.68	51 66
-	71.12 71.04 51.10 51.10 51.10	200 200 200 200 200 200 200 200 200 200	100.00	100,00	99,46	97.99
	77.04 63.10 5.17	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		100,00	01.99	99,59
5 C C C C C C C C C C C C C C C C C C C	63,70 5,47	0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	100,00	103,00	98,38	62 66
	5.47	20 20 20 20 20 20 20 20 20 20 20 20 20 2	100,00	100,00	76.22	99,50
	د د	99,42	100,00	100,00	78.27	15.72
3.11	1 ° 1	95,42	100,00	100.00	97,99	99,18
	0.0	30.06	100,00	100,00	47.42	9 N . 15
	0°0	0	100,00	100.00	° 96,85	96,54
	11.41	80°05	100,001	100,00	93,07	91.87
151	20.58	60 63	100,00	100,00	90,15	89, 89
0 ~ 0	41.63	94,22	100,00	100,00	9.1,02	92,42
101	51.18	47.23	00,001	-100,00	96.50	91,53
2~2	00 54	79.17	190.00	100.00	95°5A	11.29
16.5	50.43	97, 87	100,00	100,03	95,85	06 86
7.6	10.70	20.10	100,00	100.001	95,68	00 00
2.12	24.42	97.41	100,00	100.00	90, 32	93,69
~ ~ ~	11,15	77.14	100,00	100,00	45,59	92,69
1 ~ 1	15.51	24.15	100.00	170.00	90,56	90.68
1 15	15	46.22	100,00	100.00	99,20	69,52
1.1	0.74	74.44	100.00	100, 30	90, 10	C0,15
10	11.17	94.08	100.001	100,00	90,39	65°33
1/1	15.50	90.57	00.003	100,00	92,33	89,87
12	14, 13	74.94	100.00	1 + 0 , 0 0	91.60	85,42
173	42.11	46.M2	100,00	100,00	\$1,19	60,45
7/1	416 . 0 . 0	04, 76	100.00	100,00	68,21	89,26

A1-84

TABLE A 1-9

CITY AND HIGHWAY DRIVING MPG EQUATIONS

I. CITY DRIVING MPG

In (MPGC) = 7.25543 - 0.470768 ln (IW) - 0.191878 ln (DISP) (34.73) (14.91) (9.79) - 0.031764 DUMATR + 0.110129 DUM4CYL + 0.057034 DUM6CYL (2.97)(5.09) (5.31)+ 0.262096 DUM50-54 + 0.215409 DUM55-59 + 0.221525 DUM60-65 (11.49)(11.98)(12.88)+ 0.035437 DUM67-70 + 0.025392 DUM71 - 0.002585 DUM73 (1.83)(1.08) (0.11)- 0.000884 DUM74 + 0.025943 DUM75 + 0.218262 DUM66 (8.99)(0.04)(1.09) $R^2 = 0.917$ SEE = 0.09147 SAMPLE SIZE: 723

II. HIGHWAY DRIVING MPG

ln (MPGH) = 6.57726 - 0.319598 ln (IW) - 0.171588 ln (DISP) (32.00) (10.29) (8.80)

- 0.053424 DUMATR + 0.076115 DUMODR + 0.111939 DUM4CYL (4.96) (3.79) (5.17)
- + 0.035350 DUM6CYL 0.030421 DUM50-57 + 0.025458 DUM58-59 (3.28) (2.50) (1.76)
- + 0.068167 DUM60-66 + 0.047334 DUM67-70 + 0.028790 DUM71 (6.18) (4.05) (1.64)

 $\overline{R}^2 = 0.875$ SEE = 0.09162 SAMPLE SIZE: 723

III. DEFINITION OF VARIABLES USED IN EQUATIONS

MPGC	14	City driving MPG				
MPGH	e	Highway driving	MPG			
IW	×	Inertial weight	(Curb	weight	+	300)

TABLE A 1-9 (Cont.)

DISP	Engine displacement
DUMATR	= 1 if automatic transmission, 0 otherwise
DUMODR	I if overdrive, 0 otherwise
DUM4CYL	I if 4 or less cylinders, 0 otherwise
DUM6CYL	I if 5, 6, or 7 cylinders, 0 otherwise (only 6 cylinder engines are in sample)
DUM50-54	I in 1950 to 1954, 0 elsewhere
DUM55-59	I in 1955 to 1959, 0 elsewhere
DUM60-65	I in 1960 to 1965, 0 elsewhere
DUM66	I in 1966, O elsewhere
DUM67-70	I in 1957 to 1970, 0 elsewhere
DUM71	= 1 in 1971, 0 elsewhare
DUM73	I in 1973, 0 elsewhere
DUM74	= 1 in 1974, 0 elsewhere
DUM75	I in 1975, 0 elsewhere
DUM50-57	I in 1950 to 1957, 0 alsewhere
DUM58-59	= 1 in 1958 to 1959, 0 elsewhere
DUM50-66	I in 1960 to 1966, 0 elsewhere
DUM67-70	I in 1967 to 1970. O elsewhere

1. .

TABLE A 1-10

Description of Car	Consume: City	r Reports <u>1/</u> Bignacy	EP,	2/ Hishway
Subcompacts				
Toyota Corolla Pinto Gremlin Astre VW Ratbit ANC Pacer Honda Civic CVCC Toyota Corona Wagon VW Dasher Wagon Datsun 710 Wagon Ford Pinto Wagon	16 13 14 19 12 21 15 18 16 13	32 24 29 32 22 33 30 30 26 21	21 18 19 21 24 18 27 19 23 23 25	33 26 24 30 24 34 34 28 35 23 22
	10		10	
Lompacts Audi 100LS Peugeot 504 Volvo 2440L Saab 99LE Plymouth Valiant Chevy Nova Mercury Monarch Ford Maverick	17 15 12 16 10 12 10 9	27 25 24 28 21 19 16 16	18 20 16 21 18 16 15 14	22 27 26 27 23 21 20 18
Mid-Size Buick Century Chevelle AMC Matador Plymouth Fury	10 10 10 10	20 19 16 21	16 16 15 14	24 21 21 22
Full-Size				
Pontias Catalina Chevrolet Bel Air Flymouth Gran Fury Ford LTD	8 9 9	17 17 18 16	12 12 12 11	17 18 17 15

A COMPARISON OF CONSUMER REPORTS AND EPA CITY AND HIGHWAY DAIWING (PS DAIL (1975)

1/ Taken from various 1975 issues of Consumer Reports magazine.

. .

2/ <u>Gas Mileone Guide For New Car Duvers</u>, 1975, M.S. Environmental Protection Agency, Hashington, D.C. (2nd Edition, January 1975).

Note: Unile not noted in the body of the table, the MPS figures (Consume Records and FPA) are for the sume engine.

A1-87

TABLE AL-11

1

SALES MEIGHTED AVERAGE CLIY AND HICHMAY NGC ESTIMATES (1950-1924) BY SIZE CLASS (NONESTIC AND FORFIGH)

City Driving MG (Miles Per Gallon)

USLINING	**************************************	
USLEMITGC	00000000000000000000000000000000000000	USLINICI
USFORTCC	4 4 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	USFEAFEI 17,21 17,21 17,21 18,42 18,42 18,42 18,42 18,42 18,42 11,55 11,
25040530	1 0	Per Gallon) (59494051) 19.00 19.00 20.01 20.02 2
USCIALGC		- Wing Ming Ming (1911-68
USCOMPGC	+ 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0	USCOHECII USCOHECII USCOHECII 22,00 22,00 24,51 24,52 24,512,51 24,512,512,512,512,512,512,512,512,512,512
USSFHINGC		USSNACI 12.12 12.1
US SDHFGC	202 202 202 202 202 202 202 202 202 202	
	0	

A1-88

HULE: USJARGE - CITY Ertying NGE For size class ad USUARIGH - Highway Driving MiG for size class ad, and ad - SD, SF, CD, DF, MJ, FD, ID, IF (Domostic and Foreign Size Classes)

TADLE A 1-12

1

SALES WEIGHTED AVERAGE CURB WEIGHT AND ENGIPE DISPLACEMENT (1258-1974) By Size class (confestio and foreign)

			BY SIZE (CLASS (CURESH	C AND FOREIGN			
				Curb Weight (Founds)			
	U\$500444	USAFCURB	CNLOCURD	USCELURB	84604×10	изгречен	nstacka	5. "+ CO.5
1954	2755.	1446.	1123.	2257.	3771.	e 3 9 2 8	8625°	2 52 9 C
0.96.1	2446	1042.	3005.	2548.	3649.	u 521 ,	0757.	: .76.
3.14.1	2540°	1 8 11 6 .	24000	23234	5 H 6 2 0	4274	4721.	
1.551	2595,	1 A 5 O e	2752.	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0 < 1 < 5	a C / 2 a	129D	
2451	• < 5 5 1	1954.	2410.	2310.	5 - 1 / 0	10 C	*	
541.1	21.22.	1036。	2123	2570°	3327	1958	0 2 7 5 9	
1.21.4	21215	1450,	2117.	2362.		5.14D.	1 0 1 0 0 0 0	1212.2.
4.47.1	2541,	1915.	2757.	\$ 5 6 1 .	300°	1706.	4 6 2 1 ^a	
1 344	, HAF'S	• ۲۳۶۱	2000	2421,	5 5 7 4 .	4016	6657	
1 4 4 7	25-15.	~ O 0 B ~	* 746 *	2516.	5435°	a 0.57 a	4650.	
1004	2515	°0602	1071.	2027 .	1524	4054	u 672 a	3.90.
6461	1019.	2008.	5 7 H P .	2110.	\$408°	4177.	41 6 P 1 9	1,10
1770	2,144.5		3644	* 0 S N N	3413.	#162°	u 7 3 9 e	· 1 3 c
1471	2207.	2144	5114	2159.	3 40 .	e 5 5 1 .	a 81 5 e	A
1012	2107.	2151.	3125.	2000	3000.	8 C 5 *	0 0 C 3 0	:117.
1 1 1 1	2154	22 (4	1.1.8	2701.	.000	2497	4353.	
	34.02	0010	101	0140	6 3 5 1	6 5 6 5 5	5032.	1112
	·	8 2 A 4						
			Fnafna	Disslarrant ((Cubic Inches)	•		
	U\$50015P	USSFDISP	astaadsa	USCI 015P	US-100154	USFOOISP	USLDOISF	1212120
			1 1.00	5.64	271.0	\$65,2	369,3	5 C C B 2
2521	145.5				1.11.2	9,55,9	1, 1, 1	1 5 1 9
052	111.5	C # 17 /		C 7 2	214.0	347.7	335 %	
1963	, e	1.51				111.0	3 3 5	υ
1461	159,8	76.5	• • • • • •		10 - C	115.4	3.14 . H	1 · · ·
2.301	1 4 4 5 1	2.11			1.450	110.0	344.1	
1 1	4.041	5.4	1 4 0 A 1		271.0	124.6	5.57	5 • • • •
1466	164,0	10.01	14612		278.6	3 . 0 . 6	415.4	1 1
6001	1 2 4 0	7 a . H	< 51.1			1.022	2000	14.241
1406	103,9	5°75	< 20° 5			175.4	452.7	1
1467	1 . 1 . 5	1,0,1	B 012	101		1.1.21	047.6	5.45.5
1768	101.5	92,0	270,4	5°101			200	
247	165.0	87.1	5. 41%	4.11				
1770	5 4 5	41.4	0,515	115.6	337.6			
	1 0 0	1.54	6 2 4 2	114,5	354.0			
		9 6	200-2	116,6	345.0	5,1,6		
	2		264.5	1 5 1 . 1	35265	404.5	5	
111			10 m		31.01	0,101	1 4 7 5 4	
3.4	21:51	1 * 6.61						

.OTE: USreCURB = Curt weight in pounds for size class ret. and USerPISP = Engine displacement in cubic inches for size class ret. and us = 50, SF. CO. CT. ND. FD. LD. LF (Rum this and Fereign Size Classes).

TABLE A 1-13

「「「「「「「」」」

SALES WEIGHTED AVERAGE FRACTION OF AUTOMATIC TRANSMISSIONS AND OVERDRIVE UNITS INSTALLED (1958-1974) BY SIZE CLASS (DOMESTIC AND FOREIGN)

Fraction With Automatic Transmission

USLFFAUTO USLFFUD 1 . USLDFAUTO USC0+00 USF DF AUTO USFDFCD USHDFAUTO USHDF OD Fraction With Overdrive USCFFAUTO USCFFOD USCOFAUTO USC 11 UD USSI FAUTO 00000 USSFF00 1.0323 U355FAUTO UDISDFOU 0,2110 0,2110 0,0414 0,0414 0,0544 0,0540 0,0540 0,0540 0,0540 0.5710 6664.3 0, 45 50 0, 55 7 0, 55 7 0, 55 7 7 57 5, 0 0.1530 1114.0 0 - 1 2 4 0 A121.0 000 1/010 155

USacFAUTO = Fraction with automatic transmissions for size class ac, USacFOD = Fraction with overdrive for size class sc, and ar = SD, SF, CD, CF, ND, FD, LD, LF (Dumestic and Foreign Size Classes). NOTE:

000

000

0000 •

C 3 C 3

•••

ں ^ہ

TABLE A 1-14 SALES WEIGHTED AVERAGE FRACTION OF FOUR CYLINDER AND SIX CYLINDER ENGINES INSTALLED (1958-1974) BY SIZE CLASS (DONESTIC AND FOREIGN)

1

Fraction With 4 or Less Cylinders

	USSDF 4CYL	USSFFACYL	USCOFACYL	USCFF4CTL	USHDF4C VL	USFDFACYL	USLDF 4C YL	USLFF 4CT
E D O I N N B J E N E D O I N N B J E N N B D I D C D D D D D C D D D D D D D D D D	00000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0		5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6	60000000000000000000000000000000000000	••••••••••••••••••••••••••••••••••••••	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
		Ú.	raction With 6	Cylinders (A	ctually 5, 6,	or 7).		
	U3 SDF & CYL	USSFF6CYL	USCDFACYL	USCHERCAL	USHDF624L	USFDF6CYL	USLDF6CYL	USLFFECY
1954	1,0000 0,9978 0,000	0,0172	0,015 F	0,00%\$ 0,00%\$	0,3251	0.0100	000	0°4/41 0°5/00
1991	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2							2192.00
1999	94949		0,4257	0	5475 O	0 1455	0	12120
5971			0,0932		0.55.0	1901 0	0	9,6749
1991	0,9985 0,9922	0,0001	2225-00 0.4222	00	0.2445	0,0575	00	0,4424
1908	1260.0	0,0211	0,4585	0.0	0,1245	2000.0	c •0	0,7814
6901	1.0000	C,0175	0,4924	00	~ * > O * O	0,0220	0.0	0,7444
1471	0,0769	1510 0	5 2 2 5 0	0,0071	0,000	0,004	0.0	01910
2101	0,0499	1910.0	0,5167	\$000	0,0132	2200.0	0,0	0,7542
5151	0,2341	6510°0	0 • 5 2 4 5	00000	0,1057	0,0054		0,7015

USacf4CYL = Fraction with 4 or less cylinder engines for single class sc. USacf6CYL = Fraction with 6 (5, 6, or 7) cylinder engines for single class sc. and no = SD, SF, CD, CF, ND, FD, LD, LF (Domestic and Foreign Size Classes).

NOTE:

TABLE A1-15

PARAMETERS FOR COST PER MILE

	Average Price Relatives, Car Aged i to New PR _i	Fraction Financed FRACFIN ₂
i=0	1,0	.75
1	.77345	.75
2	.65625	.70
3	.52549	.65
4	.42183	.60
5	.33748	.50
6	.26640	.40
7	.21133	.35
8	.17580	.30 ·
9	.15000	.25

ななたないのないであっていたね

ALL AL

TABLE A1-16

ESTIMATION OF CONSUMER INSTALLMENT RATE, NEW AUTOS

FRMCICR = 5.92465 + 0.662764 FRMCS (21.4814) (20.5486)

> $\bar{R}^2 = 0.963$ SEE = .11029 DW = 1.625 Quarterly Data, 1972.1 to 1976.1

Definitions.

1

FRMCICF Consumer Installment Rate, New Autos, FRMCS: Moody's Total Corporate Bond Rate.

ANNUAL ESTIMATES OF FRMCICR

1950	7.82	1971 -	11.19	
1954	8.02	1972 '	10.98 (10	.98)
1958	8.68	1973	11.09 (11	.15)
1962	8.98	1974	11.87 (11	.80)
1966	9.47	1975	12.20 (12	.24)
1970	11.56	1976 (3 Months)	12.05 (12	.16)

Values in parentheses are data for 1972-76.

TABLE A1-17

OPERATING COST COMPONENTS BY SIZE CLASS AND YEAR OF OPERATION

I.Rerair Costs

Year	Subcompact	Compact	<u>Mid-Size</u>	Full-Size	Luxury
1	\$76.15	\$79.41	\$90.63	\$81.84	\$90.92
2	114.59	107.14	111.26	115.37	126.91
3	153.55	170.61	206.63	242.65	266.92
4	197.01	218.90	257.50	296.09	325.70
5	216.24	240.27	257.91	275.54	303.09
<u>،</u> 6	241.93	258.81	280.68	292.54	321.79
7	370.84	412.04	404.80	397.56	437.32
8	159.59	177.27	174.55	171.82	189.05
9	71.06	78.95	161.64	244.33	258.76
10	27.99	31.10	30.14	29.17	32.09

II.Parking, Tolls, and Other Miscellaneous

Year	Subcompact	Compact	Mid-Size	Full-Size	Luxury
1	\$208.36	\$208.36	\$208.36	\$208.35	\$208.36
2	199.22	199.22	199.22	199.22	199.22
3	190.08	190.08	190.08	190.08	190.08
4	180.94	180.94	180.94	180.94	180.94
5	180.33	180.33	180.33	180.33	180.33
6	180.33	180.33	180.33	180.33	180.33
7	177.89	177.89	177.89	177.89	177.89
8	171.80	171.80	171.80	171.80	171.80
9	165.71	165.71	165.71	165.71	165.71
10	154.75	154.74	154.74	154.74	154.74

TABLE A1-17 (Cont.)

.

III. Insurance Costs

Year	Subcompact	Compact	<u>Mid-Size</u>	Full-Size	Luxury
1	\$145.00	\$155.00	\$159.50	\$164.00	\$173.00
2	140.00	147.00	151.5	156.00	165.00
3	140.00	147.00	151.5	156.00	165.00
4	133.00	140.00	143.5	147.00	156.00
5	133.00	140.00	143.5	147.00	156.00
6	108.00	114.00	115.0	116.00	126.00
7	108.00	114.00	115.0	116.00	126.00
8	108.00	114.00	115.0	116.00	126.00
9	108.00	114.00	115.0	116.00	126.00
10	108.00	114.00	115.0	116.00	126.00

IV. Tires Including Taxes

Year	Subcompact	Compact	<u>Mid-Size</u>	Full-Size	Luxury
1	\$14.96	\$16.47	\$17.38	\$18.28	\$18.28
2	13.37	14.76	16.02	17.29	17.29
3	11.82	13.05	19.30	25.54	25.54
4	33.41	36.88	42.35	47.82	47.82
.5	33.08	36.52	41.93	47.34	47.34
6	37.48	41.38	45.16	48.94	48.94
7	35.96	39.70	47.14	54.59	54.59
8	60.07	66.32	66.98	67.63	67.63
9	53.39	58.94	57.90	56.87	56.87
10	40.24	44.42	44.88	45.35	45.35

TABLE A1-17 (Cont.	7 (Cont.)
--------------------	-----------

Year	Subcompact	Compact	<u>Mid-Size</u>	<u>Full-Size</u>	Luxury
1	\$10.71	\$10.71	\$11.09	\$11.47	\$11.47
2	9.94	10.71	11.09	11.47	11.47
3	10.67	11.47	11.86	12.24	12.24
4	10.67	11.47	11.86	12.24	12.24
5	12.24	13.01	13.01	13.01	13.01
6	12.24	13.01	13.39	13.77	13.77
7	12.24	13.01	13.39	13.77	13.77
8	12.24	13.01	13.39	13.77	13.77
9	11.47	12.24	12.24	12.24	12.24
10	6.00	6.88	6.88	6.89	6.89

V. Motor Oil Including Taxes

Source: Cost of Operating An Automobile by L.L. Liston and C.L. Gautnier, U.S. Department of Transportation, Federal Highway Administration, Office of Highway Planning, Highway Statistics Division, April 1972.

ł

TABLE A1-18 COSTS PER MILE ACROSS STATES in 1972

	CP:172SDCAP	CPM72SFCAP	CPM72STCAP	CPH72CDCAP	CPM72CFCAP	CPH72CTCAP
DC	0,11405	0,11/15	0,11589	0,13920	0,14857	0,14001
ME	0,10562	. 0,10256	0,10776	0.12428	0,13807	0,12+23
48	0,10632	0,10405	0,10814	0,12501	0,13778	0,1275
VT	0,10450	0.10844	0,10625	0,12142	0,15579	0,12394
MA	0,11034	0,11305	0,11223	0,13168	0,14357	0,13334
RI	0,11357	B*11297	0,11518	0,13565	0,14817	0,13713
5T	0,11455	0,11/04	0,11622	0,13695	0,14832	0,13859
NY	0.11505	0,11607	0,11090	0,13436	0.14949	7,13548
NJ	0,11641	0.11782	0,11677	0,13755	0,15072	0,13379
PA	0,10000	0,11182	0,11063	0,12861	0,14351	0,12953
DH	0.10474	0,11500	0,11185	C,13005	0,14433	0,13038
IN	0,10590	0,11117	0,10383	0,12517	2,14162	6,15936
11	0,11131	0,11542	0,11355	0.13254	0,14745	5,13311
ΨI.	0,10748	0,11222	0,10406	0,12752	3,10370	0,12774
.#I -	0,105/6	0,11061	0,10865	0,12573	0,:3755	9,12506
M N	0.10403	0,11251	0,11045	5.12661	0,14144	0.15030
14	0,10700	0,11024	0,10877	0,16507	0,16070	0,12021
M0	0,10790	0,11166	0,11016	C.12744	0,10321	0,12762
ND	0,10230	0,10634	0,10470	0,11955	0,13784	0,11991
SD	0,10189	0,10605	0,10014	0,11917	0,13025	0,11978
NE	0,10675	0,11087	0,10925	0,12541	0,10256	0,12703
K 5	0,10446	0,10779	0,10645	0.12530	0,13890	0,12344
DE	0,11024	0,11290	0,11178	0,:3104	0,14417	C.13185
MD	0,11001	0,11318	0,11100	0,13114	0,14560	0,13199
۷¥	0,10610	0,11002	0,10640	0,12528	0,10003	0,12708
HA	0,10554	0,10906	0,10761	0,12368	0,13905	0,12391
NC	0,10592	0,10950	0,10838	0,12613	0,14185	0,12558
SC	0,10554	0,10959	0,10811	0,12518	0,10237	0,12507
GA	0,10725	0,11137	0 . 10444	0,12798	0,14417	0,12847
71	0,10940	0,11290	0,11170	C,13133	0,14702	0,13189
KΥ	0,10657	0,11058	0,10590	0,12580	0,16252	0,12505
TN	0,10721	0,11111	6,10962	0,12728	0,14307	0,12776
AL.	0,10542	0,11021	0,10672	0.12503	0.16325	0,12722
MS	0,10433	0,10740	0,10641	0,12357	0,12044	0,12384
AR	0,10356	0,10049	0,10540	0,12238	0,13880	0,12256
LA	0,10642	0,10952	0,10549	0,12569	0.14425	0,12710
TX.	0,10743	0,10999	0,10905	0,12667	0,14356	0,12925
PT	0,10320	0,10750	0,10641	0,12136	0,13790	0,12213
10	0,10443	0,10842	0,10734	0,12391	C,14167	0,12473
WY	0,10349	0,10774	0,10624	0,12229	0,13030	0,12327
03	0,10635	0,11252	0,11105	0,12943	0,10079	0,13153
NM	0,10539	0,10951	0,10814	0,12562	0,14190	0,12637
AZ	0,10847	0,11174	0,11069	0,12962	0,14635	0,13043
UT	0,10725 -	0,11139	0,10989	0,12794	0,14200	0,12877
NV	0,11177	0,11591	0,11453	0,13542	0,15097	0,13644
411	0,10447	0,11409	0,11277	0,13174	0,14698	0,13354
0R	0,10551	. 0,10906	0.10808	0,12531	0,10097	0,12785
64	0,11267	0,11333	0,11250	0,13049	0,14689	2,13595
UK	0,10/0/	0,11029	2,10595	0,12741	0.14138	0,12511
AK	0.11030	0,11230	0,11175	0,13150	0,14331	0,13334
мI	0,10350	0,10860	0,10860	0,13091	0,12925	0,13123
US	0,10890	0,11228	0,11101	0.12971	0.:4413	0,13053

TABLE A1-18 (Cont.)

	CPM72MDCAP	CPH72FCAD	CPM72LDCAP	CPH72LFCAP	CPM72LTCAP	CPM72TTCAP
DC	0,15892	0,17775	0,21753	0.22600	12055.0	9,15890
₩E	0.14307	0,15932	0,19730	0,20554	0.14803	3.13990
ън	0.14403	0,10031	0.19892	0.20619	0,19958	0.139.02
VT.	0.14075	0.15597	0.19371	0,19610	9,19424	0.13520
MA	0.15237	0.16924	0.20505	0.21017	0.20920	0.14895
RI	6.15499	0.17480	0.21918	0.22361	0.2:973	3 15165
CT.	0.15540	0.17679	0.21850	0.21742	0.21845	5 15254
NY	0.15496	0 17250	0.21631	0 22220	0.21005	0 15580
NJ	0.15908	0 17721	0.22093	0 22704	0.22143	6 15922
PA	0.16850	0 16527	0.20614	0 21985	0 20727	0 10772
DH	0 15005	0 16673	0 20452	0 22213	0 26531	0 15100
TN	0 14526	0 101/2	0 19630	0 21/180	0 19705	0 10777
11	0 5378	0,10140	0 20310	0 22059	0 30000	0,14773
MT	() 1 4 6 6 C	0 16311	0 20130	0 33301	0 20161	0,15/0/
- h	0 10790	6 16079	0 10/08	0 20757	0 10553	7 13091
4N	0 1 4 7 5 3	9.10034	0 10107	0.220/5/	0,14326	0,14764
1 4	0 1 4 4 3 1	0,10020	0,20102	0,22005	0,20241	0,13044
- N -	0.10.13	0,10132	0.1903/	0,215//	0,10712	V 19/45
	0,14072	0,10320	0,14444	0.21344	0.20020	3,1341-
20	0,13575	0,15270	0,10025	0,21285	0,10564	0.14201
-15	0,13002	0,1763/	0,10727	0,25,80	0,17//2	0,14114
2.6	0.1.4.44	0,10140	0.14105	0,22143	3.14924	0,14627
22	2,14130	0,15/28	0,14243	0,20556	0,19377	0,102-7
J.C.	0,12020	0.10///	0.20955	0,22314	0.20747	0,19465
	0.1>050	0,16784	0.20824	0,22076	0.20924	2,14780
¥ A	0,14531	0,16165	0,19857	0.21244	5-10005	0,14241
A V	0,14286	0,15872	0,19725	¢*51123	6,19801	7,13997
746	0,14463	0.16102	0.14654	0.21656	0,19739	0,10065
30	0,14457	0,16079	0,19724	0,22143	0,19848	0,14498
ية ريا م	0,14764	0,16432	0,20210	0,22402	0,20363	0,14731
P 1.	0,15094	0,16801	0,21056	1555.0	¢.21246	C,15075
×Υ	0,14528	0,16167	6,19862	0,21291	0,19925	0,14536
TN	0,14703	0,16381	0,20144	0,21761	0,20256	0,12877
14	0,14026	0,16263	0,19861	0,21827	0.14441	0,14753
MS	0,14263	0,15871	0,19337	0,2146*	0,19398	0,14596
≜ <i>R</i>	0,14059	0,15659	0,19173	0,21357	0.19540	0,15017
12	0,14043	0,16302	0,20085	0,21732	C,20165	0,14697
T X	0,14799	0.10470	0,20251	0.23;520	0,20334	0,15152
۹T	C.13957	0,15538	0.19120	0,20886	0,19207	0,13675
ID	0 10209	0,15965	0,19776	0,20647	0,19842	0,13964
,8 Y	0.13595	0.15594	0,19181	0.21315	0.19293	0,14130
¢Ο	0.14837	0.10534	0,20563	05015.0	0,20635	0.14332
N.M.	0.14461	0.16097	0.19933	0.20469	0,19973	0.14120
4 Z	0.14939	0.10073	0.20659	0.22171	6.20909	3,16690
UT	0.14773	0.16460	0.20488	0.2:461	0.20584	0 :4353
NV	0,15532	0.17262	0.2:972	0,23720	0.22190	0.15667
A A	0.15232	0.10913	0.20830	0,2:748	0.20930	0,14301
DR	0.14447	0.16049	0.20047	0.210:6	0.20177	0.13710
4.3	0.15410	0.17201	0.21642	0.2235.	0.21752	0.14555
			0.20180	0 21515	0.20232	0,14716
UK	0,14638	C,16244	0,20140	V (1227	0.21485	0.14156
46	0.15203	C, 16613	0 31730	0 21404	0.21625	0,12913
- MI	0,15139	0,19445	0,21/20	0,21003	0,20666	0.14428
05	0,14933	0,16620	0,205/9	6851483	0 Evolu	

TARLE A1-19

NOMINAL COSTS FER MILE

	CIMSDCAP .	LI'NSI L/W'	CIMUNU.	LITILL LAIT	in much	CLAN DOW		
1016	0 0 1 1 1 4	. 19010 0	0.08470	0.05150	0,09469	0.11166	0.136.02	0.12086
					0 1000	0 11178	0 11000	19941 0
1254	10010.0	~U110°0	L . N D II * II	11110 11				
194.0	0.0P[H]	0~2000	0.0665 J	0,0000	0.09969	C.110AS	0,10358	0,13119
141	04740	01110	0.08600	9.07125	0.09718	0.10924	0.14170	P.11407
0.46			0.00061	0.08690	0.07920	0.11107	0.10957	0.11900
44.4	0 00 00	0.0175	0.08152	0.05670	0.10087	0.11.89	0.10505	0.10107
176.0		0.0707	0.07075	0.07056	0.10025	0.11171	0.14916	6.1#1A3
		0.01402	0.07580	0.07520	0.10219	0.11558	0.15126	0.10049
196.		0.04117	010000	11900 0	0.10440	119811.9	0.15508	0.15059
1401	0.0755	2.00460	0.104.78	0.10171	0.11745	0.:2458	0.14253	0.15719
			0.11107	0.10863	0.12020	0.13546	0.14725	0.142/8
6401		0.0000	0.11526	0.11626	0.12649	n. 14175	0.17713	0.17047
11.01		0.10175	12041.0	12699	0.13613	0,15152	0,10.25	0.11773
1.0			0.12790	0.13666	0.10725	0.16159	9.2021	0.197071
~		50011 0	10421 0	0.11055	0.14960	0.18651	0.20619	21245
1 1 0 1		. 12236.	0.13786	0.15/11	0.15916	0.17417	0.21606	0.25067
2/71	0.19911	0.10267	0,15916	0,15233	0.19001	0.19645	0.24780	110002.0

CMSDCAP • Nominal costs per mile for Lomestic Subcompacts CFMSFCAP • Nominal costs per mile for Foreign Sukompacts CFMLDCAP • Hominal costs per mile for Domestic Compacts CFMLCAP • Hominal costs per mile for Noreign Compacts CFMFDCAP • Nominal costs per mile for Noteign Compacts CFMFDCAP • Nominal costs per mile for fullsite Domestics CFMFDCAP • Numinal costs per mile for Lurur Domestics CFMFDCAP • Numinal costs per mile for Lurur Domestics CFMFDCAP • Numinal costs per mile for Lurur Domestics CFMFDCAP • Numinal costs per mile for Lurur Domestics CFMFDCAP • Numinal costs per mile for Lurur Domestics

. Reproduced from Less available copy.

TADLE A1-20

REVISED DASE FUNCIASE PRICES BY CLASS (USACPUBASE-2)

5 10 / · / 0	237H . 60	1450,15 2574,60
2575.10	2018.05	2018 20102
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	10.0055	1412,01 22541
2 100 TH TH	2250.45	1/11.4' 2//0 . 6'
2922.13	2274.27	1121.45 2214.27
2515°	2210 43	1421.15 2210.23
2522,19	10.4144	1414,10 224,47
2599,67	2421.25	24.15.45 61.24.1
2738.61	ビジョントロン	85,5465 2A 2A 444
25,0015	25 42 22	1417, 27 25191
2427.60	2840 22	25, 14 2440 22
3-152.57	211110	21.1.1.2 70.1715
1211.05	10°2020	10,2025
1504.52	2411,19	2201.01 241 241
. 1801.A.	H	HI. 1994. 11 . 1994. 11
10,020	24.4145	24.4145 46.5115
50°0120	46.0404	3194,17 21,4018

1

and the second second

いたい ちんちゃ ちんちゃ ちょうちょう

(2-100040eSU)
CLASS
01
EXPENDITURES
OPT LONS
DTAL

		USSF PUOPT-2	USCREVOPT-2	USCFPLIOFT-2	USHDFUOPT-2	USf DrU0PT-2	USL0PU0P1-2	USLFFUOPT-2
11-11	26.361	100.01	64° 1.00	ر ۲۵ س ۲۰ ۵	201.10	a 3.6. a 1	614,812	n1 4, AG
254	101 44	101,04	152.47	152, 23	201.65	a 51.52	645.31	003.51
1961	117.64	110.63	121.74	121.74	214,01	320.05	A1.10	1.1.14
1.4.1	119.24	62 611	15.41	110.41	224.11	11.50	119.04	1.0 1
100	14.611	10.001	1 1 4 . 7 3	129.73	44,122	514.52	114.02	20.21
101	100.10	106.74	144.10	140.17	245,84	90.248	111.10	111.19
44.4	114.47	114.42	159.00	Ut."AC.1	10,115	570,000	25,287	145.22
545	111,40	1 34 . 110	141.04	141.07	104,411	434.00	11.44.51	11.14
dar.	1 34.03	114,04	211.75	205.73	525.17	45 .20	B-5.4 U	A 3 4 6 4 6
101	06.141	151.96	15.502	15.50%	22.22	05.002	50°117	611.00
14.1	150.51	150.01	60° n46	CH9.47	a 5A, 71	12.1104	437.75	9-11,00
4.4	159.27	54,251	10 411	510,0H	16,140	804°318	1014,93	1015.97
011	111.72	111.72	14.5.21	545.21	541,49	140.041	10.8.81	10+4.17
111	117.64	177.00	405.15	41.4.16	64.3 64.	84.354	0.,*1211	1141,54
211	51.22	51.444	457,54	157.54	10.141	412.14	1111,70	1151.17
111	212.24	212.04	457,86	. 41.9 44	10.4.14	F1 . 25 F	11rh 21H	1142.15
914	11 11	- 117 11	11.94	22.22	25.2.2	71.257	00,2211 .	. 57"72"1

Reproduced from Lost available copy.

A1-101

1

A Contract of the second of the second
IMXIMUM OPTIONS PRICES BY CLASS (USnePOPTH)

	USSUFOFIM	USCDPOPIM	NTAD POLIN	USFDPOUTH	USLDPDTM
2.27	1005 60	1017 UM	14.5501	1149.74	01-11-11
	010	11 . 404	1.61.20	1179.10	1241.15
0-1	R1. 17	er. 11.4	21.0.15	1074.45	1211.50
13-11	196,21	114.12	67.546	1061.53	12 17 . 44
191.2	4144	112 144	14.120	10.11.57	1197.94
1 10 1	0.00 000	21.11.12	034.450	1600.21	90.441
1364	14.446	In I the	10,220	10	1204.20
1.465	11 N 4	10,400	761.76	1844.65	1210.70
1966	20.116	115,212	40.0.08	1058.51	45.54%1
1 1	511.03	0 v n v p	110,010	1011.21	1212.
17.15	12.540	41, AMP	1004.74	1041.50	1251.00
1964	45.74	1001	21.101	1 11 14 12	1258.01
1 7 2 11	1014.26	44.141	1657.45	1000 \$8	11001
1161	1016.41	1066.55	1123.91	1144.14	1347.13
1222	1004.19	50,0101	1117.79	1150,50	1.115.40
1101	1012.57	1057.51	1127.74	50.5511	1116.72
1014	104.44	64°2311	1169.44	61.411	00.51.51

TABLE A1-23 TRANSPARTATION CUNICES FOR DOMESTIC CARS BY STATE (1972)

1

	 N.01 P.U.S	MID COM	HTD. UPM	115.510	A PT - MON	1105 . 411	6 117 - A1 1	1 IV-1 JA	AVV. AL
1011-1011	LUN-WU	NIK - ATH							
95	95	104	1005	1:4	118	1 10	125		Ē
125	123	1/2/1	136	154	151	151	0/1	661	2
115	118	118	126	138	144	144	153	154	ź
101	=	107	113	125	127	201	146	150	113
110	119	122	129	145	149	145	155	112	51
116	117	120	128	140	145	141	161	157	121
110	107	118	122	134	1 34	147	150	160	124
18	66	105	100	110	122	201	: 34	149	Ξ
106	104	112	117	21	134	139	142	151	2
24	16	16	101	100	112	120	123	136	10'.
54	5	15	15	55	27	70	66	81	5
60	5	64	5	62	64	10	10	56	19
19	19	3	69	85	17	BB	00	50	17
22	24	24	24	25	22	Ð		90	33
: 2		18	2	67	81	100	101	16	11/11
	101	120	122	111	116	120	151	100	124
601	101	201	23		101	2	114	14	-
301		201		101		201		UC UC	
101	00	6.01		140	150	2	176	120	
021	171			110	201	121			2
	041	[]]	101		10.1	101		10	13
521		121	1 34	00	501		3		
126	126	261	61	551	151	091	9/1		
[0]	201	50		21	011	1.51	161		
55	66 091	101	901				021	5	
201	n :	6.01	29	671	071	2		201	
\$	6	5	100	51	5	9/1	101	001	1.1
=	2		221	0.1	117	141	221	110	2
2		22		140	0.1	5 2 2		271	
23		53		101	001	101	200	150	
2		5	000	6	111		101	50	
	1001			50	126	22	142	:5	1
201	001			51	16.6	101	170	5	
140.	110		148	169	174	921	181	90	
190	121		011	551	51	164	171	23	-
148	101	141	159	6/1	104	001	150	102	2
156	163	16/	111	991.	204	101	226	129	5/1
151	164	10.9	1 93	230	233	224	263	[[]	141
. 150	208	214	220	247	254	270	2015	[6]	2141
15.8	101	1116	196	226	229	218	236	179	141
150	163	110	181	203	201	203	224	144	173
150	190	044	201	2.30	235	223	258	162	101
150	209	215	228	251	261	265	201	[6]	514
150	200	202	212	240	246	242	242	187	206
153	2(21)	217	229	253	26.3	112	289	193	2.1
150	200	211	229	25.3	263	112	289	[6]	2.1
15.0	2148	217	229	252	263	271	209	191	221
150	208	217	229	25.3	263	271	209	[6]	172
1.2	140	146	154	171	1/5	671	161	R.	÷
202	266	2711	662	324	336	100	203	247	Ē
Put	535	11	410	4116	202	175	254	1.5	
10%	112	/11	171	131	141	155	141	117	- 24

TABLE A1-23 (Cont.)

KEY:

SUB-ALL = All subcompact cars.

COM-SDN = Compact sedans.

COM-WGN = Compact wagons.

MID-SDN = Midsize sedans.

MID-HGN = Midsize wagons

- LPF-SDN = Low priced full-size sedans (e.g., Ford, Chevrolet, Plymouth, and Dodge).
- LPF-WGN = Low priced full-size wagons (e.g., Ford, Chevrolet, Plymouth, and Dodge).
- HPF-ALL = Expensive full-size cars; all full-size sedans and wagons not in low price group except Cadillac, Lincoln, Imperial and Thunderbird.

LUX-ALL = All luxury sedans.

VET-ALL = All corvettes.

AVR-ALL = Average across all classes.

TABLE A1-24

TRANSPORTATION CHARGES FOR IN-GRIED SUBCOMPACE AUTOC BY STATE (1910)

1

STATE	AUTOFRGTAISY72
DC ME KH VT MA RI CT	30.500 69.000 60.000 46.000 46.000 34.000
NJ PA OH IN IL MI WI	30.800 31.000 32.700 71.000 75.000 80.500 79.000 87.000
и 6 0 0 0 8 8 8 8 8 8 8 8 8 0 8 0 8 0	92.000 89.400 153.50 135.00 117.00 95.000 32.000 31.000
VA WV SC GA FL KY TN AL	66.000 72.500 69.500 70.000 70.500 98.900 85.500 56.000 58.500
MS AR LA TX MT IO WY CO NM	46.000 56.000 31.000 38.100 135.00 124.00 147.00 147.00 120.00
UT NV WA CA CA OK HI US	94.500 68.000 124.00 103.50 36.000 62.500 35.000 35.000 59.117

TABLE A1-25 TRANSPORTATION CUMAGES FOR ODMETIC AND FOREICH CARS OVER TIME (1947-1974) 2

1

55 35 er 36	2C 3C		55 35	55 35	55 35	55 35	55 35	55 35	52 35	48 37	59 38	66 42	66 42	66 42	66 42	65 42	66 42	66 42	66 42	66 42	76 47	F.4 51	97 59	11y 59	119 59	119 611	141 64	arst all full-slize In low price group oin, insterial and (e.g., Mustang 11).
10	16	67	67	16	67	16	16	67	67	E01	105	118	:18	811	118	118	118	118	118	1:8	122	125	132	153	15.1	153	159	full-size c 1 wogons not 1111ec. Linc 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
50	\$0	50	53	\$0	50	50	50	50	\$0	53	54	\$0	61)	60	9	3	60	c	60	60	66	22	85	101	101	101	114	 Espensive sedans and escept Cac Frunderbit Frunderbit Specialty All lutury All corvei Solain Su
78	76	78	78	78	78	18	78	78	78	83	84	ы	94	94	94	94	94	94	96	94	201	109	120	146	146	145	163	HrF-ALL SUB-SPC LUX-ALL YET-ALL
63	63	63	C 9 J	63	63	63	63	63	63	67	63	76	76	76	76	76	76	76	76	76	86	56	103	133	138	661	154	edans . Flyzouth, . Flyzouth,
60	60	60	60	60	60	60	60	60	3	63	64	21	72	72	72	72	21	72	21	72	58	15	104	134	134	1 35	148	l full-size s d. Chevrolet i full-size w d. Cnevrolet
60	60	60	60	60	60	60	60	60	60	63	64	72	12	12	12	а	22	12	21 .	12	60	83	107	123	C 2 1	124	¥C 1	• Low priced (e.g., for and Dodge) • Low priced (e.g., for and Dodge)
es	58	58	58	58	58	58	6) 91	58	5.8	61	62	63	69	69	69	69	69	69	69	69	11	P.4	3b	117	117	811	161	LPF - 40N
54	54	54	54	54	54	54	54	54	54	57	58	65	65	65	65	65	65	65	65	65	11	78	16	211	512	(()	C £1	spact cars. gans. sgans. agans.
50	50	50	50	50	50	50	50	50	50	53	54	60	60	60	60	60	60	60	60	50	66	22	85	105	105	101	116	 All subcon Conjact se Compact we Midslze se Mid-slze v
46	46	46	46	46	46	46	46	46	46	49	50	56	56	56	56	56	56	56	56	56	62	68	18	78	76	80	64	Still-ALL COM - SUN COM - SUN MIU - SON MID - MGM
1947	8948	1949	1950	1951	1952	6591	1954	1955	1956	1351	1958	1959	1960	1961	1962	1963	1964	1965	9961	1961	1968	1169	19/0	1761	2/61	£761	1974	: X 3 X

NEW AUTO SALES TAXES BY STATE, 1972 (Percent)

	TXRSAUT0Y72	TXRLAUTOY72	TXRAUTOY72	TXRLWTDAUTOY72	TXRWIDAUTOY72
	State	Local	Total	Weighted Local	Weighted Total
DC MNE NH VERM	4.0 5.0 0.0 4.0	0.0 0.0 1.7 0.0	4.0 5.0 1.7 4.0	0.00 0.00 1.70 0.00	4.00 5.00 1.70 4.00
MASS RI CONN AY NJ	3.0 5.0 7.0 ^.0 5.0	0.0 0.0 0.0 3.0 0.0	3.0 5.0 7.0 5.0 5.0	0.00 0.00 0.00 2.18 0.00	3.CO 5.00 7.00 6.18 5.00
PENN OHIO IND ILL MICH WISC	5.0 4.0 4.0 4.0 4.0	0.0 0.5 0.0 1.0 0.0 0.0	6.0 4.5 2.0 5.0 4.0 4.0	0.00 0.02 0.00 0.99 0.00 0.00	6.00 4.02 2.00 4.99 4.00 4.00
MINN IOHA MSSR ND SD NEB	4.0 3.0 3.0 4.0 3.0 2.5	0.0 1.0 0.0 0.0 1.0	3.0 4.0 4.0 3.9 3.5	0.00 0.01 0.00 0.00 0.00 0.00	3.00 3.01 4.00 3.00 2.50
KAN DELA MYLD VIRG WV NC SC	3.0 2.0 4.0 5.0 2.0 4.0	0.5 0.0 0.0 0.0 0.0 0.0 0.0	3.5 2.0 4.0 2.0 5.0 2.0 , 4.0	0.25 0.00 0.00 0.00 0.00 0.00 0.00	3.25 2.00 4.00 2.00 5.00 2.00 4.00
GEOR FL KENT TENN ALAB MSSP ARK LOUS TEXS MONT	3.0 4.0 5.0 3.5 1.5 3.0 3.0 3.0 4.0 1.5	0.0 0.0 1.5 2.6 0.0 3.0 0.0 3.0 0.0	3.0 4.0 5.0 3.5 3.0 3.0 6.0 4.0 1.5	0.00 0.00 1.26 1.60 0.00 0.00 3.22 0.00 0.00	3.00 4.00 5.00 4.76 3.10 3.00 3.00 6.22 4.00 1.50
IDA WYO	3.0 3.0	0.0	3.0 3.0	0.00 0.00	3.00

TABLE A1-76 (Cont.)

	TXRSAUTOY72	TXRLAUTOY73	TXRAUTOY72	TXRLWTDAUT0Y72	TXRWTDAUT0Y72
	State	Local	Total	Weighted Local	Weighted Total
CO1	3.0	3.0	6.0	0.65	3.65
NM	2.0	0.5	2.5	0.05	2.05
ARIZ	3.0	2.0	5.0	0.90	3.90
UTAH	4.5	0.0	4.5	0.00	4.50
NEV	7.0	0.5	7.5	0.06	7.06
WASH	4.5	0.5	5.0	0.26	4.76
OREG	0.0	0.0	0.0	0.00	0.00
CALI	5.0	0.5	5.5	0.50	5.50
OKLA	2.0	2.0	4.0	0.83	2.83
ALAS	0.0	3.0	3.0	4.31	4.31
HAW	4.0	0.0	4.0	0.00	4.00

STATE AND LOCAL TAX RATES ON NEW AUTOS--U.S. (Percent)

•	TXRSAUTO	TXRLAUTO	TXRAUTO	TXRLWTDAUTO	TXRWTDAUTO
	State	Local	Total	Weighted Local	Weighted Total
1946 1947 1948 1949 1950	1.17 1.24 1.24 1.24 1.24	0.31 0.31 0.31 0.32 0.32	1.48 1.55 1.55 1.57 1.57	0.25 0.25 0.25 0.25 0.25 0.25	1.42 1.49 1.49 1.50 1.50
1951 1952	1.41	0.41	1.82	0.32	1.73
1955 1954 1955	1.51	0.41 0.43	1.85	0.32 0.32 0.34	1.83
1956 1957 1958	1.69	0.43 0.43 0.43	2.13 2.12 2.14	0.34 0.34 0.34	2.04 2.03 2.05
1959 1960 1961	1.71 1.81 1.91	0.43 0.44 0.44	2.15 2.25 2.35	0.34 0.35 0.35	2.05 2.16 2.26
1962 1963 1964	2.07 2.11 2.19	0.44 0.44 0.45	2.51 2.56 2.64	0.35 0.35 0.36 0.37	2.42 2.46 2.55 2.60
1965 1966 1967 1968 1969	2.23 2.79 3.07 3.47 3.50	0.48 0.47 0.40 0.39	3.27 3.54 3.87 3.89	0.39 C.38 0.29 0.27	3.17 3.45 3.75 3.77
1970 1971 1972 1973 1974 1975	3.60 3.81 3.85 3.92 3.99 4.05	0.39 0.78 0.63 0.73 0.73 0.74	4.19 4.59 4.48 4.55 4.72 4.80	0.28 0.41 0.43 0.43 0.43 0.48 0.49	2.89 4.23 4.28 4.35 4.47 4.55

INTERPOLATION OF END OF YEAR CARS IN OPERATION (OPMVUAYEND) (Million Vehicles)

	OPMVUAYEND	OMPVUAY	ONVUANR
1947	28.744	27.521	3.1672
1948	31.349	29.968	3.4910
1949	34.326	32.731	4.8390
1950	37.219	35.922	6.3264
1951	39.143	38.516	5.0609
1952	40.986	39.770	4.1584
1953	43.294	42.202	5.7390
1954	45.882	44.387	5.5355
1955	48.591	47.378	7.1699
1956	50.618	49.804	5.9552
1957	51.962	51.432	5.9823
1958	53.789	52.492	4.6510
1959	56.095	55.087	6.0413
1960	57.978	57.103	6.5766
1961	59.857	58.854	5.8547
1962	62.176	60.860	6.9389
1963	64.772	63.493	7.5567
1964	67.495	66.051	8.0651
1965	70.102	68.940	9.3139
1966	72.116	71.264	9.0085
1957	74.163	72.963	8.3574
1968	76.926	75.358	9.4039
1969	79.471	78.495	9.527 <u>3</u>
1970	81.792	80.448	8.4595
1971	84.788	83.137	9.9636
1972	88.122	85.439	10.608-

13

197

FSTIMATION OF END OF YEAR CARS IN OPERATION BY STATE (Mill. Venicles)

OPMVUAYENDY72	OMPVUAY72	OMVUANRY72
.37195	. 37 004	.034797
.41254	. 40627	.0:6:78
.33260	. 32145	.049190
.12963	.18451	.025633
2.2757	2.2257	.25044
.40893	40353	.044328
1.4285	1.4126	.14970
6.3739	6.2246	.81909
3.3313	3.2605	.41423
4.7758	4.6906	.56239
4.5816	4.8350	.60141
2.1558	2.1040	.28159
4.7834-	4.6313	.69167
4.1865	4.0321	.64615
1.8676	1.8632	.20446
1.7650	1.7567	.16325
1.3180	1.3094	12644
1.9453	1.9018	.24416
.24857	.24580	.026650
.28231	.28111	.025363
.69644	.69029	.069964
1.0741	1.0520	.11295
. 27 37 1	.26823	.033382
1.5428	1.4881	.23390
1.8530	1.8046	.24765
.67839	.66578	.030865
2.1280	2.0848	.26058
1.1730	1.1585	.12532
2.0705	2.0217	.25690
3.6028	3.5290	.44269
1.3700	1.3611	.13162
1.5088	1.5502	.20573
1.6092	1.5923	.16693
.64113	.82895	.093524
.71079	.69617	.037440
1.3562	1.3236	.17592
4.7316	4.6175	.61436
.23298	.28060	.025200
. 30202	.30877	.026275
.14067	.13922	.014528
1.1065	1.0912	.12199
58304.	.40051	.050222
.65260	.64229	.02935
.46000	.45650	.045122
.26807	.25395	.03296
1.5175	1.5155	.13052
. 97425	.96394	.10116
9.4520	9.3444	.99582
1.1722	1.1304	.12044
.033584	.081753	.010598
.33710	. 33224	.037484
88,122	86.439	10.605

DEENT MARTY MARANA DAILER AND DOS SEDDAY WAS GEFY THAN A LT M DY ON A THAN WAS A KARDS

TABLE A1-3C

ESTIMATED SURVIVAL PROBABILITIES FOR CARS BY VINTAGE YEARS

	Pi	9 _i	PSEi	PDE _i	PDEC _i
•	00000	00000			
0	.99800	.00200	.9980000	.0020000	.0020000
	.993/9	.00621	.9918024	.0061975	.0081976
2	.98859	.01141	.9804859	.0113164	.0195141
3	.98212	.01788	.9629548	.0175310	.0370452
4	.97268	.02732	.9366468	.0263079	.0633532
5	.95990	.04010	.8990872	.0375595	.1009128
6-	.94010	.05990	.8452318	.0538553	.1547682
7	.90706	.09294	.7666759	.0785558	.2333241
8	.88297	.11703	6769518	0897240	3230482
9	.82805	.17195	5605499	1164018	4394501
10	75339	24661	4223126	1382372	5776874
11	71481	28519	3018732	1204393	6981268
12	70000	30000	2113112	0005610	7886888
13	70000	30000	1/70172	0503013	8520822
3.4	70000	- 30000	1025/2/	0432752	.00520022
19	.70000	. 30000	.1033424	.0443/33	0904570
15	.70000	.30000	.0724796	.0310627	.9275204
16	.70000	.30000	.0507357	.0217438	.9492643
17	.70000	.30000	.0355149	.0152207	.9644851
18	.70000	.30000	.0248604	.0106544	.9751396
19	.70000	.30000	.0174022	.0074581	.9825978
20	.70000	.30000	.0121815	.0052206	.9878185

KEY:

p _i	= Probability of a car surviving the <i>i</i> th year of its life given it survived until the end of year <i>i</i> -1 (beginning of year <i>i</i>); <i>i</i> =0,,20.
9 _i	Probability of a car not surviving the <i>i</i> th year of its life given it survived until the end of year <i>i</i> -1 (beginning of year <i>i</i>); <i>i</i> =0,,20.
PSEi	$i = \pi p \text{for } i=0,\ldots,20$ $j=0 j$
	= Probability of a car surviving until the end of the <i>i</i> th year.
PDEi	= q_0 for $i=0$; q_i $\begin{pmatrix} \pi \\ \eta=0 \end{pmatrix}$ for $i=1,\ldots,20$.
	= Probability of a car being scrapped during the <i>i</i> th year.
PDECi	= 5. PDE. for <i>i</i> =0,,20 <i>j</i> =0 <i>J</i>
	= Probability of a car being scrapped by the end of the ith year.
	= 1 - PSE_{i}

TABLE A1-31 AGE RATE ADJUSTMENT FACTORS AND

ESTIMATED SCRAPPAGE RATE ADJUSTMENT FACTORS AND FRACTION OF CARS WHICH SURVIVE EACH YEAR BY VINITAGE (1953-1974)

37366	0,93440	0,91456	0,48649	0,87105	0,85285	0,85725	0,06759	0.86646	0,87497	0,81750	0,81162	0,67491	0 86585	0,83392	0.85178	0,64753	0,80332	0,64031	0.84820	0,84824	0,64253	0.85219
8P3E5	0.95785	0.94750	0,92499	0,91015	0.94180	0,91217	00516.4	0,91369	0,991964	0,92136	0°42038	0 91567	0.91120	0.70408	0,90253	000000	0,69719	0,90104	0,90128	0 40120	0.69722	0,90431
3PSE	0,97578	0,96673	0.95129	0,94419	0,91616	0,50454	0,94733	0 ° 5 2 4 6 9	0,95063	0,95102	0,75069	115260	0,90379	0 83890	0,93014	0 93675	0,91519	0,43011	11016.0	11910.0	0,93551	0 0 2 0 5 0
5P3F.)	0,98476	0,98011	0 96799	0,96569	0,96133	0 96198	0,97016	0,95256	0 4 7 1 4 0	0,97141	0 01099	0,97019	0 96661	0,96357	0 94337	0,96280	0,96201	0 9 9 3 9 5	0,96399	0 46334	0,96192	0,96517
3P9E2	10266 0	0 98903	0,98280	0 98396	61016 0	0,98387	0 90496	0,94584	0 913493	0,485;4	0,98471	0,70415	0,98199	0.70030	0,90058	0.98047	0,97988	0.98156	0.96117	0,75079	0,97965	0 ° GB 1 0 3
3636 I	0 . 99665	0,73502	0,99198	0,97181	0,99111	0 9 7 7 10	0,99380	50200 0	0,97382	0 99382	0,99848	0 99328	0 97217	0,99150	29192	0,99180	60100.0	0.49226	0,99211	0.99105	0.99110	0,99270
SP360	M3000,0	0,99846	0.97785	0,97805	0.99776	0.97872	0,97840	0,99823	0 03053	0.94546	0.97839	0.99855	0.99801	0 4 4 7 4 0	0.99807	0.99798	0.99789	0.99818	0,99800	0.99803	0.1783	0 94635
SPHI ADJ	0.40836	0.61015	1.07650	14110.0	1.11.33	0.61710	0.14004	0.88,551	0.70734	0.14111	0. 80347	11248.0	0.77410	1.04753	21446.0	1.01147	1.65 802	02404.0	241495	0.90251	1.00447	0, 92670
	1251	1950	1255	1756	1991	1254	0501	1960	1961	136.2	1 3 4 1	1964	1765	1966	1961	1968	1969	1710	1101	1912	1973	0161

- - = Fraction of a car's vintage *i* which will survive the current year (*i*=0,...,20). SPSC*i*

•

TABLE A1-31 (Cont.)

SPSLIQ	0,02721	0 1AA9'	0,30012	0,24212	0,10427	0,17470	0,14522	0.15878	0,16725	0,17244	0,17325	0,17144	0,1595A	0.14110	0.11275	0.12276	0,11502	0,11110	0,11117	0,11097	0,10514	0,11219	
3PSE13	0,00692	0,443,29	0,34202	0,21142	0,21644	0,21570	0,21420	0,21230	0,22431	0.22027	0,22717	0,22758	0,20104	01/81 0	0,17674	0,16522	0,1554.0	0,15010	0.15465	0,15601	0,14915	0,19790	
375612	0.55070	0.50510	10101 0	0, 32500	0.246.04	0,20226	0,21112	0,20473	0,27443	0.30025	0,30241	0,29105	0,27317	0,24013	0,23719	0,22745	201100	0.22170	0.22122	0.22129	0.21005	0.22547	
313511	0.63237	0.57848	0.44033	0,40119	0, 14721	0.37745	0.11775	0.37646	0.19008	0.17046	0.375/7	0.13459	0, 16213	0.33379	0.32452	0, 31702	0, 30500	0.11320 .	0.11379	0.31166	0.2718	0.31778	
975110	0.71572	0.45429	0.53624	0.51277	0.45150	0.47864	0.50340	0.4081.6	0.51010	51515	1 2 6 9 6 0	0.50502	0.47655	0.45064	0.44667	0.23570	0, 02849	0.41512	0.43299	0.43069	0.01.01	0.44170	
57 SF 9	0.77507	0.757.0	0.61505	0.43733	0.5770	0.62345	0.62520	0.61795	0.61334	0.61527	0.4.5477	0.61174	0.40797	0.58631	1 2002 0	0.57123	0.54119	0.51017	0.15.042	0.51.09		0.5700	
SPGER	0.0578	0 82041	0.74519	0.11110	0.10045	20221.0	0.72076	0.72105	0.11172	0.71576	0.73613	0.71151	0.71537	0.49602	0.67149	0.68521	0.67661	0.60106	0 0 1 1 2 0	0.48205			
1 15-15	0 0.070	0 1 1 1 0	01/211.0	0.00.71	0.74041	0.40.19	0 HOULD	0.14141	0. 81.150	A 1.12.4	0 11/01	677.01 0	0.14141	0 27161	0.1120	0.111.0	0 764119	10.770	0 7 7 1 1 7				
	1.1.1	1	,,,,,	4561		1.201		0401	40		1461	1940	2.	1744	1.101	1 2 4 0	1.96.0						,

KEY: SPSEi = fraction of a car's vintage i which will survive the current year ($i=0,\ldots,20$).

A1-114

TABLE A1-31 (Cont.)

ある。 たいにはなる、なったちます。 かいまいちょうからい うまいちょう あんたい たいまい あいまい ままま しかいてい 雪かない

A1-115

• •

10

1111

ESTIMATED NUMBER OF CARS IN OPERATICN AT YEAR END DISAGGREGATED BY DOMESTIC AND FOREIGN SIZE CLASSES

(Millions of Units)

	OFMYUASDYE ND	OPHVUASFYEND	OPHVUACDY! ND	OPM4UACFYEND	UPHVUAHOVEND	OPMVUAFOTT ND	OPMVUALDYEND	OPMVUALS TEND
[4 6]	0.162	0.146	0.290	0.004	23.017	17.153	2.200	9.019
19591	0.397	0.154	0.350	0.00	24.765	17,053	2,409	0,025
1955	0.571	0.202	0.561	0.004	26, 5: 5	18,766	2,513	0,029
\$541	9.238	0.272	0.476	0.005	27,802	19,030	2,094	0.018
1451	0.25.0	0.433	0.465	0,025	20,919	10,916	2,866	0.049
1958	572	0.103	0.595	0,056	30,073	60°.41	3,050	0.074
61.61	0.402	1.254	1.0/2	0,111	11,017	16,093	3,297	6 ÷ 0 * 0
1460	0.712	1.659	2.035	0,153	30,934	18, 731	3,435	0,129
1961	1.125	1.451	2,980	0,179	30.737	19,051	3.687	c.105
1966	0.0	2.199	102.4	0.200	30,355	19.693	914'5	0,162
1961	249	2.478	5.149	0.218	24,848	20.950	4,152	0,178
1968	2001	2,825	6.289	0.210	28,963	22,663	e, 580	501°0
1965	2.000	3.200	7.010	0.256	27,381	24,916	4,650	0.208
1 746	2.078	1 549	6.235	0.278	25,902	24,700	8°908	۲.۶۰ و الم
1961	41.6 T	010	0.810	0.312	24.535	20, 341	5,182	0,245
1968		4.676	10.443	0.144	23.600	191,05	5,503	0,275
1969	100	104	1	0.369	22,716	51,150	5,875	0,505
1970	1.012	0.00	12.511	0.412	22,103	32,643	6.048	0.525
1471	2.191	7.061	13.211	0.672	21.507	33,565	6,437	0, 193
1972	2.1.2	0.002	004.1	0.542	21, 339	34,298	4 813	0.454
1913	1.014	7 0 0 S	9.618	0.635	21, 310	54.206	7.271	0,520
0101	6,00,	9,607	15,261	0,735	21,692	33,542	7,465	0,5A8

KEY: ONPVUAncYEND = Estimated Number of Cars in Operation at Year End for Size Class ac.

Where as assumes the following values: 50 = Domestic Subcompat Cars 5F = Foreign Subcompact Cars 7D = Domestic Compact Cars CF = Foreign Compact Cars

MD = Domestic Mid-Size Cars FD = Domestic Full-Size Cars LD = Domestic Luxury Cars LF = Foreign Luxury Cars

ESTIMATED NUMBER OF CARS IN GPERATION AT YEAR END DISAGGREGATED BY SIZE CLASSFS

	OPMVUASTYEND	OPMVUACTYEND	OPMVUAMDYEND	OPMVUAFDYEND	OPMVUAL 1 YEND
1953	0.507	0.294	23,037	17,153	2,303
1954	0.511	0,540	24,765	17,835	2,432
1955	0 523	0.385	26,375	18,766	2,541
1956	0.570	0.434	27,802	19,080	2,731
1957	0.701	0.510	28,919	18,916	2,915
1958	1,035	0.651	30,073	18,900	3,130
1959	1 656	1,132	31,017	18,893	3,396
1960	2,366	2,188	30 9 3 4	16,881	3,609
1961	5.077	3,159	30,737	19,055	3,432
1962	3,689	4 403	30,353	19,653	4,080
1961	4.277	5,366	29 848	20 6 950	4,350
1964	4.767	6 527	28,963	22,663	4 575
1965	5,281	7 666	27,581	24,916	4 658 458
1966	5,677	8,712	202 25	26,700	5,125
1961	6 065	9.793	24,535	20,341	5,430
1968	6 541	10 a 787	23_680	30,141	5,777
1969	6 990	11,836	22,716	31,754	6s176
1970	7,731	12 223	22,103	32643	6,393
1471	9,202	15,683	21,507	33,565	6 R31
1972	10.774	14.302	21, 339	34,298	7,329
1973	12.641	15, 255	21,314	34,206	7,791
1974	14,412	15,996	21,892	34,542	8,082
				•	

A1-117

KEY: OPHNUAACYEND = Estimated Number of Cars in Operation at Year End for Size Class ac,

Where ac assumes the following values: SI = Total Subcompact Cars CI = Total fompact Cars MD = Douncstic Mid-Size Cars

i

FD = Domestic Full-Size Cars
LT = Total Luxury Cars

AUTOMOBILES ON WHICH USED CAR PRICE DATA WAS GATHERED

Domestic Subcompacts (.3745)

Pinto (.5589) Vega (.4311)

Foreign Subcompacts (.6255)

Latsun (.1883) MG (.0232) Toyota (.2800) Triumph (.0157) Volkswagen (.4918)

Domestic Compacts (.9431)

Barracuda (.0352) Camaro (.0571) Dart (.3247) Hornet (.0557) Maverick (.1847) Mustang (.0959) Nova (.2467)

Foreign Compacts (.0569)

Saab (1.0)

Domestic Mid-Size (1.0)

Chevelle (.5756) Coronet (.1411) Matador (.0214) Torino (.2619)

Domestic Full-Size (1.0)

Ambassador (.0128) Chevrolet (.5922) Ford (.2399) Impala (.756) LTD (.613) Caprice (.244) Galaxy (.387)

Domestic Luxury (.9196)

Cadillac (.7737) Lincoln (.1106) Corvette (.0282)

New Yorker (.0906)

Foreign Luxury (.0804)

Jaguar (.0594) Mercedes (.4751) Porsche (.4655)

Numbers in parentheses refer to the share of the car in its sub-class or the share of the foreign or domestic car in its class.

PRICE OF OHE TO SEVEN YEAR OLD FULL-SIZE CARS RELATIVE TO A NEW FULL-SIZE CAR (1958-1974)

YEAR	PUTFD	PU2FD PNFD	PU3FD	PU4FD PUFD	PUSED PNED	PUGFD	PU7FD PIIFD
1958	.7041	.5342	.4244	.3064	.2246	.1452	.1056
1959	.6599	.5338	.4172	.3331	.2404	.1711	.0976
1960	.6630	.4788	3976	.2968	.2213	10 27 27 27 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	.1002
1961	.6549	.5120	.3748	.3227	.2403	.1767	.1159
1962	.6546	.5353	.4431	.3081	.2525	.1576	.1169
1963	.6631	.5356	.4362	.3501	.2248	,1 874	.1073
1964	.6903	.5383	.4303	.3504	.2727	.1643	.1338
1965	.6534	.5344	.4335	.3220	.2470	.1769	.0969
1966	.6350	.5040	.4035	.3065	.2172	.1610	.0334
1967	.6061	.4361	.3052	.2953	.2428	.1720	.1047
1968	.6019	.4841	.3752	.2956	.2246	.1727	.1213
1969	.5718	.4532	.3722	.2979	.2306	.1731	.1479
0701	.5689	.4524	.3775	.3035	.2368	.1855	.1347
1971	.5812	.4422	.3715	.2804	.2099	.1808	.1542
1972	.5910	.4440	.3455	.2747	.2178	.1593	.1355
1973	.5850	.4691	.3581	.3022	.2205	.1659	.1077
1974	.6444	.5088	.4087	.3262	.2585	.1949	.1379

Al-119

CONSTRUCTED PRICE RELATIVES FOR ONE YEAR OLD CARS VERSUS NEW CARS OF THE SAME SIZE CLASS (1958-74)

	1SK/NA	PU/NCT	PU/NMO	PU/NFD	PU/NL7
1958	.85714	.78307	.68546	.70413	.75232
1959	.85665	.78794	.62464	.65985	.75797
1960	.75604	.66403	.62953	.66297	.70755
1961	.76923	.66649	. 60173	.65489	.72189
1962	.81171	.69194	.64163	.65463	91717.
1963	.86608	.65398	.63369	.66307	.72980
1964	.84165	.66494	.64548	.69030	.69318
1965	.82561	.67368	.67437	.65337	.67431
1966	.79116	.64105	.63624	.63495	.67948
1967	.72988	.62027	.63796	.60613	.65939
1968	.68935	.58525	.61553	.60192	.70612
1969	.74784	.61555	.64870	.57176	.69329
1970	.75672	.66205	.644¢3	.56890	.67358
1251	.79473	.67338	.62130	.58120	.69718
1972	.74233	.68245	.65435	.59101	.73492
1973	.71349	.70042	.62143	.58459	.66579
1974	.84755	.79745	.70879	.64436	.68337

A1-120

Key: PU/HST = Price of a one year old Subcompact over the price of a new Subcompact. PU/HCT = Price of a one year 314 Compact over the price of a new Compact. PU/HYD = Price of a one year old Mid-Size over the price of a new Mid-Size. PU/HTD = Price of a one year old Full-Size over the price of a new Full-Size. PU/NLT = Price of a one year old Luxury over the price of a new Luxury.

ESTIMATES OF PRICE DECAY FACTORS (A's) BY SIZE CLASS (1958-1974)

	PU/NADJST	PU/NADJCT	PU/NADJMD	PU/NADJFD	PU/NADJLT
1958	11771.	.28355	.26821	.30132	.31782
1959	.15711	.25884	.25330	.27947	.30438
1960	.16545	.25892	.27768	.29593	.31073
1961	\$6094	.26316	.24272	.26851	.31050
1962	.17774	.28047	.22696	.26931	.30089
1963	.14905	.28502	.25990	.26967	.30003
1964	.14294	.26162	.26843	.26335	.27017
1965	.14299	.29732	.30003	.24795	.29369
1966	.15742	.30315	.30792	.28908	.28275
1967	.15318	.28209	12922.	.26127	.27852
1368	.14951	.24481	.26293	.25379	.23151
1969	.17800	.26354	.26967	.228 [°] 1	.28652
0261	.17624	.24018	.23357	.22734	.26722
1971	.17043	.22122	.23247	.23449	.27290
1972	.19969	.21232	.23453	.25319	.23269
1973	.21838	.22267	.23092	.25710	.28087
1974	.21114	.20626	.21652	.24254	.26818

A1-121

key: PU/NADJST = Price Decay Factor for Subcompacts. PU/NADJCT = Price Decay Factor for Compacts. PU/NADJMD = Price Decay Factor for Mid-Size Cars. PU/NADJAD = Price Decay Factor for Full-Size Cars. PU/NADJLT = Price Decay Factor for Luxury Cars.

Ř
- 8
R
8
No. of Lot, House, etc., in such states, which are states and the such states are states and the such states are states a

ESTIMATES (BASED ON A ESTIMATE) OF TAO TO SEVEN YEAR OLD FULL-SIZE DOMESTIC PRICE RELATIVE (1958-1974)

	PU02/NFD	PU03/NFD	FU04/NFD	PU05/NFD	PU06/NFD	PU07/NFD
1958	0.5209	0.3854	0.2851	0.2110	0.1561	0.1155
1959	0.4990	0.3773	0.2353	0.2158	0.1631	0.1234
1960	0.4931	0.3668	0.2729	0.2030	0.1510	0.1123
1961	0.5007	0.3828	0.2926	0.2237	0.1710	0.1308
1962	0.5001	0.3820	0.2918	0.2229	0.1703	0.1301
1963	0.5063	0.3867	0.2953	0.2255	0.1722	0.1315
1964	0.5305	0.4077	0.3133	0.2407	0.1850	0.1422
1965	0.5099	0.3979	0.3105	0.2423	0.1891	0.1476
1966	0.4755	0.3562	0.2667	0.1998	0.1496	0.1121
1967	0.4668	0.3594	0.2768	0.2131	0.1641	0.1264
1963	0.4670	0.3623	0.2811	0.2181	0.1692	6.1313
1969	0.4551	0.3623	0.2883	0.2295	0.1227	0.1454
1970	0.4532	0.3611	0.2876	0.2291	0.1825	0.1454
1/61	0.4597	0.3636	0.2876	0.2275	0.1799	0.1423
1972	0.4588	0.3562	0.2765	0.2147	0.1666	0.1294
1973	0.4521	0.3496	0.2703	0.2090	0.1616	0.1250
1974	0.5056	0.3967	0.3113	0.2442	0.1916	0.1504
Key: PU02/NF	0 = Estimate of	PU21D	PU04/NFD = Es	timate of purp	PU06/NFD =	Estimate of PU6FD
PU03/NF	D = Estimate of	PUJED PNED	PU05/NFD = ES	timate of PUSFD	= 03N//ON4	Estimate of PUTFD

INDICES OF	USED	CAR PRICES, NEW	CAR PRICES, AND	NEW	AUTO	REGISTRATIONS
		(All Indices	Based To 1972 *	: 100))	

	USED CI	AR PRICE	INDICES	IFFA3/	UPEA NEU	
YEAR	<u>CPI 1/</u>	ANWP 2/	PUSED1TT67	AVERAGE	CAR PRICE	REGISTRATIONS
1952	90.0	* =	* • =		59.9	39.2
1953	80.7	••			60.5	54.1
1954	68.7	**			€0.9	52.2
1955	65.0	**	** ** =		64.0	67.6
1956	62.5	••			69.1	56.1
1957	70.0				74.9	56.4
1958	72.6		87.9	67.4	79.8	43.8
1959	81.0		84.6	68.2	77.8	56.9
1960	75.7	65.9	79.7	67.9	75.6	62.0
1961	78.6	67.4	78.5	70.3	75.4	55.2
1962	85.8	71.8	79.7	72.1	82.9	65.4
1963	86.9	74.4	79.9	73.6	77.5	71.2
1964	90.6	75.5	81.3	77.1	77.9	76.0
1965	90.0	73.1	80.9	77.5	80.1	87.8
1966	87.8	73.6	79.7	74.3	81.8	84.9
1967	90.5	73.9	79.5	74.5	84.8	78.8
1968	92.9	79.9	83.0	80.3	89.4	88.7
1969	93.3	82.2	85.6	86.0	92.5	89.8
1970	94.4	83.5	89.2	90.6	92.4	79.8
1971	99.7	92.8	97.5	97.1	99.3	93.9
1972	100.0	100.0	100.0	100.0	100.0	100.0
1973	106.4	111.1	101.7	103.1	103.4	105.2
1974	111.0	123.6	121.9	124.3	110.9	87.5

If Bureau of Labor Statistics Consumer Price Index for Used Cars Rebased to 1972 = 100 (Code: 4111-2000)

2/ Automotive News Almanac Wholesale Auction Price for Used Cars Converted to 1972 = 100 index.

3/ Average Retail Price of Used Cars Computed from NADA Used Car Price Statistics converted to 1572 = 100 index.

Al-123

USED CAR MARKET IDENTITIES

- I. Prices of New Cars (Price Excluding Taxes)
 - a) PNEWST = USSTPUB+0 + JSSTPUTRN
 - b) PNEWCT = USCTPUB+0 + ISCTPUTRN
 - c) PNEWMD = USMDPUB+0 + USMDPUTRN
 - d) PNEWFD = USFDPUB+0 + USFDPUTRN
 - e) PNEWLT = USLTPUB+0 + USLTPUTRN
- II. Prices of One Year Old Used Cars
 - a) PUSEDIST = PU/NST * PNEWST
 b) PUSEDICT = PU/NCT * PNEWCT
 c) PUSEDIMD = PU/NMD * PNEWMD
 d) PUSEDIFT = PU/NFD * PNEWFD
 e) PUSEDILT = PU/NLT * PNEWLT

III. New Car Trade-Ins By Vintage and Total

a)	VOLUN01	8	0.1621	*	OMVUANR	\$	0.5
b)	VOLUNO2	z	0.2141	*	OMVUANR	*	0.5
c)	VOLUN03	=	0.1764	*	OMVUANR	*	0.5
d)	VOLUNO4	=	0.1407	*	OMVUANR	*	0.5
e)	VOLUN05	H	0.1050	*	OMVUANR	Ħ	0.5
f)	VOLUNO6	H	0.0805	*	OMVUANR	*	0.5
g)	VOLUN07	8	0.0479	¥	OMVUANR	¥c	0.5
h)	VOLUN08	8	0.0347	*	OMVUANR	*	0.5
i)	VOLUN09		0.0234	*	CMVUANR	*	0.5
j)	VOLUNIO	z	0.0152	*	OMVUANR	*	0.5

III. New Car Trade-Ins By Vintage and Total (Cont.) k) VOLUN = VOLUNO] + VOLUNO2 + VOLUNO3 + VOLUNO4 + VOLUNO5 + VOLUNO6 + VOLUNO7 + VOLUNO8 + VOLUNO9 + VOLUNIO IV. Potential Used Car Market Entrants By Vintage and Total a) VOLUPO2 = SPSE2 * (OMVUANR(-1) * 0.1621) * 0.5 b) VOLUPO3 = SPSE3 * (OMVUANR(-2) * 0.1621 + OMVUANR(-1) * 0.2141) * 0.5 c) VOLUPO4 = SPSE4 * (OMVUANR(-3) * 0.1621 + OMVUANR(-2) * 0.2141 $+ (OMVUANR(-1) \pm 0.1764) \pm 0.5$ d) VCLUPO5 = SPSE5 * (OMVUANR(-4) * 0.1621 + OMVUANR(-3) * 0.2141 + OMVUANR(-2) * 0.1754 + OMVUANR(-1) * 0.1407) * 0.5 e) VOLUPO6 = SPSE6 * (OMVUANR(-5) *0.1621 + OMVUANR(-4) * 0.2141 + OMVUANR(-3) * 0.1764 + OMVUANR(-2) * 0.1407 + OMVUANR(-1) * 0.1050) * 0.5 f) VOLUP07 = SPSE7 * (OMVUANR(-6) * 0.1621 + OMVUANR(-5) * 0.2141 + OMVUANR(-4) * 0.1764 + OMVUANR(-3) * 0.1407 + OMVUANR(-2) * 0.1050 + OMVUANR(-1) * 0.0805) * 0.5 g) VOLUPO8 = SPSE8 * (OMVUANR(-7) * 0.1621 + OMVUANR(-6) * 0.2141 + OMVUANR(-5) * 0.1764 + OMVUANR(-4) * 0.1407 + OMVUANR(-3) * 0.1050 + OMVUANR(-2) * 0.0805 + OMVUANR(-1) * 0.0479) * 0.5 h) VOLUPO9 = SPSE9 * (OMVUANR(-8) * 0.1621 + OMVUANR(-7) * 0.2141 + OMVUANR(-6) * 0.1764 + OMVUANR(-5) * 0.1407 + OMVUANR(-4) * 0.1050 + OMVUANR(-3) * 0.0805 + OMVUANR(-2) * 0.0479 + OMVUANR(-1) * 0.6347) * 0.5 i) VOLUPIO = SPSEIO * (OMVUANR(-9) * 0.1621 + OMVUANR(-8) * 0.2141 + OMVUANR(-7) * 0.1764 + OMVUANR(-6) * 0.1407 + OMVUANR(-5) * 0.1050 + OMVUANR(-4) * 0.0805 + OMVUANR(-3) * 0.0479 + OMVUANR(-2) * 0.0347 + OMVUANR(-1) * 0.0234) * 0.5j) VOLUP = VOLUP02 + VOLUP03 + VOLUP04 + VOLUP05 + VOLUP06 + VOLUP07 + VOLUPOB + VOLUPO9 + VOLUPIO

- V. Fraction of Potential Used Car Market Entrants Actually In The Market VOLUPF = (PURMYUUA - VOLUN)/VOLUP
- VI. Total Transactions In Used Car Market By Vintage
 - a) VOLUTO1 = VOLUNO1
 - b) VOLUTO2 = VOLUNO2 + VOLUPF * VOLUPO2
 - c) VOLUTO3 = VOLUNOC + VOLUPF * VOLUPO3 .
 - d) VOLUTO4 = VOLUNO4 + VOLUPF * VOLUPO4
 - e) VOLUTO5 = VOLUNO5 + VOLUPF * VOLUPO5
 - f) VOL JTO6 = VOLUNO6 + /CLUPF * VOLUPO5
 - g) VOLUTO7 = VOLUNO7 + VOLUPF * VOLUPC7
 - h) VOLUTO8 = VOLUNO8 + VOLUPF * VOLUPO8
 - i) VOLUTO9 = VOLUNO9 + VOLUPF * VOLUPO9
 - j) VOLUTIO = VOLUNIO + VOLUPF * VOLUPIO
- VII. Total Transactions In Used Car Market By Size Class 10 VOLUT $sc = \Sigma$ (SHRscNR(-i) * VOLUTi) i=1where sc = ST, CT, MD, FD, LT

and VOLUT: = VOLUTO1, ..., VOLUTIO for i=1, ..., 10

IX. Compute Expected Scrappage Weighted Average Price For An Old Car

a) Compute Expected ("Normal") Scrappage By Vintage for Old Cars SCOLD08 = 0.11703 * SPSE7(-1) * OMVUANR(-8) SCOLDO9 = 0.17195 * SPSE8(-1) * OMVUANR(-9) SCOLDID = 0.24661 + SPSE9(-1) + OM/UANR(-10)SCOLD11 = 0.28619 * SPSE10(-1) * OMVUANR(-11) SCOLD12 = 0.3* SPSE11(-1) * OMVUANR(-12) * SPSE12(-1) * OMVUANR(-13) SCOLD13 = 0.3* SPSE13(-1) * OMVUANR(-14) SCOLD14 = 0.3* SPSE14(-1) * OMVUANR(-15) SCOLD15 = 0.3SCOLD16 = 0.3* SPSE15(-1) * OMVUANR(-16) * SPSE16(-1) * OMVUANR(-17) SCOLD17 = 0.3* SPSE17(-1) * OMVUANR(-18) SCOLD18 = 0.3* SPSE18(-1) * OMVUANR(-19) SCOLD19 = 0.3SCOLD20 = 0.3* SPSE19(-1) * OMVUANR(-20) $SCOLD = \frac{20}{z} SCOLD_{z}$

b) Compute Weighted Average Price

 $PUOLD = \{ \begin{array}{c} 20 \\ \Sigma \\ i = 08 \end{array} \\ \begin{array}{c} SCOLDi \\ sc \end{array} \} \left[\begin{array}{c} \Sigma \\ SHRscNR(-i) \\ sc \end{array} \right] * PUSED1sc \\ \begin{array}{c} sc \\ sc \end{array} \right]$

* exp (-(*i*-1) * PU/NADTsc)]) / SCOLD

where sc = ST, CT, MD, FD, LT

Definitions For Used Car Market Identities

Symbol

Definition

OMUANR	Number of new cars registered during the year
OPMVUAYEND	Number of cars registered during the year
PNEWsc	Price of a new car of class $s\sigma$ where $s\sigma$ = ST, CT, MD, FD, LT
PU/Nsc	Price of a one year old car of class <i>sc</i> relative to the price of a new car of class <i>sc</i> where <i>sc</i> = ST, CT, MD FD, LT
PU/NADJsc	Exponential rate of decline for used car prices of vin- tage $v = 2$, 10 for car of class <i>so</i> where <i>so</i> = ST, CT, MD, FD, LT
PURMVUAA	Number of used cars purchased during the year (i.e. used car market volume)
PUSEDIsc	Price of a one year old car of class sc where $sc = ST$, CT, MD, FD, LT
PUSEDR	Average retail price of a used car.
PUSEDRsc	Average retail price for a used car of class so where so = ST, CT, MD, FD, LT
PUSEDW	Average wholesale price for a car traded in the whole- sale market.
Shrsonr	Share of new registrations for a car of class sc where sc = ST, CT, MD, FD, LT
SPSE	Fraction of new cars registered i years ago are still in operation at the end of the current year (SPSE: = SPSE1,, SPSE10)
USscPUB+0	Base plus options price for a new car of class sc where sc = ST, CD, MD, FD, LT
USscPUTRN	Transportation charges for a new car of class so where so = ST, CT, MD, FD, LT

Symbol

VOLUN Number of new to car car trade-ins

Definition

VOLUN: Number of new to new car trade-ins which are cars of vintage *i* (VOLUN*i* = VOLUN01, ..., VOLUN10)

VOLUP Number of cars which have been traded in by their original owners, have survived, and are potentially in the used car market.

VOLUP: VOLUP: VOLUO) and VOLUO = $\sum_{i=1}^{10} VOLUPi$

VOLUPF Fraction of VOLUP which is traded in the used car market.

VOLUTec Number of cars purchased in the used car market which are of class sc where sc = ST, CT, MD, FD, LT

VOLUTiNumber of cars purchased in the used car market which
are of vintage i (VOLUTi = VOLUT01, ..., VOLUT10), and

 $PURMVUUA = \sum_{i=1}^{10} VOLUT_i$

	NUMBER OF	FAMILIES	AND UNRELATED	INDIVIDUALS BY ST	ATE, 1970 AND 197	2	
		NCFY72	NCFY70	NPRUY72	NPRUY70	NPRY72	NFRY70
DC -		.16518	.16348	.14624	.13192	.75200	75651
ME		.26086	.24815	.072771	.060393	1.9260	.99205
NH		.19604	.18383	.056320	.049131	.77400	.73768
VT		.11303	.10741	.033797	.629273	.46000	.44433
HA		1.4404	1.3910	.50268	.44243	5.7950	5,6892
RI		.24621	.23667	.066975	.058673	.95900	.94672
CT		.79269	.76765	.22918	20228	3, 6800	3.0317
NY		4.7188	4,6096	1,7126	1.5248	18.367	18.237
NJ		1,9162	1.8388	.50762	4- 397	7.3490	7,1682
PA		3.0894	3.0111	91512	81291	11 905	11 794
OH		2 7533	2 6911	78925	70309	10 722	10 652
TN		1 167 1	1 3217	38104	33650	\$ 2860	5 9137
11		2 8733	2 7042	03880	83215	11 254	11 114
MT		2 2608	1002	CAE76	57019	0 0120	0 0751
LIT .		1 1220	. 0275	26022	.3/010	9.0130	0.0/31
Nº1		05430	1.0775	. 35033	. 30002	4.5200	9.41/7
7.8		.95419	.92133	.32609	.2309/	3.8770	3.2050
10		./445/	./1//8	.22825	.20044	2.6840	2.8244
FU .		1.2430	1.2048	.40198	. 32203	4./4/0	4.0/05
ND		.15463	.14824	.038734	.038734	.63400	.61776
20		.16819	.16194	.043220	.043220	.68000	. 66551
NE		. 59172	.37416	.11263	.11263	1.5280	1.4835
KS		.59705	.58185	.16723	.16733	2.2580	Z.2466
DE		.14498	.13692	.034128	.034128	.57100	.54810
MD		1.0219	.97414	.26660	.25660	4.0480	3.9224
VA		1.2110	1.1623	.28661	.28661	4.7650	4.6485
WV		.47540	.45449	.10110	.10110	1.7950	1.7442
NC		1.3496	1.2925	.28410	.24796	5.2210	5.0821
SC		.66305	.62869	.12835	.11092	2.6380	2.5905
GA		1.2052	1.1498	.29762	.25895	4.7330	4.5896
FL.		1.9923	1.8114	.69757	.56312	7.3470	5.7894
KY		.86153	.82522	.19694	.17193	3.3060	3.2157
TN		1.0806	1.0244	.24767	.21399	4.0720	3.9237
AL.		90686	.87466	19484	.17089	3,5210	3.4442
MS		55280	.53444	12075	.10640	2,2560	2,2169
AR		53611	50520	+ 13225	11359	2.0090	1.9233
1 A		91067	87277	22278	19424	3.7350	3.6413
TY		2 9636	2 8181	82213	71132	11.504	11,197
ы́г.		18006	17181	057665	050149	71600	69441
TO.		10726	170/5	055000	046622	75500	71257
10		000513	C2A30	026930	023121	31600	33242
81		.009013	.63470.	.020039	17023	2 34000	2 2072
00		. 59565	. 34/10	.61449	.1/350	2.2040	2.2073
N/75		.25130	. 646/4	.00292/	.6336/9	1.0/50	1.0100
AZ		.49393	.43839	.158/5	.12541	1.9530	1.//03
UT		.27007	.249/4	.073025	.0015-5	1.12/0	1.0593
NY		.13764	.12417	.050317	.045305	.53300	.483/4
WA		.87898	.86254	. 33179	.29574	3.4160	3.4092
OR		.57608	.54248	.21270	.18255	Z.1850	Z.0914
CA		5.2001	5.0013	2.2226	1,9483	20.411	19.953
OK		.71032	.67926	.21529	.18764	2.6330	2.5592
AK		.073319	.05667	0.020497	.016987	. 32500	.30038
HI		.18424	.17073	.055901	.047211	.51600	.76356
US		53.296	51.169	16.598	14.531	.20823	203.21

Reproduced from best available copy. é

TABLE A1-43 Consumer Cost Index Data

Table 1. Standard budget and lixed weight indexes of family liking costs, bulumn 1973.

8 ·	Standar indi	d anglet Frag	Field weig	nt indsam		Standar: Inda	t budget ses	Fied woig	nt indaars
Are3	Total casts (including Income and accial Security taxes)	Con- aumotion costa	Con- aumotion costs edjuated tor climate ²	Con- aumotion costs not adjusted tor climate ^a	Aree	Total ccsta (including income and accial accurity taxes)	Con- aumption costs	Con- sumption costs Pojusted for climate P	Com sumation costs not adjusted for climate 2
	Inter 1	Indea 2	Indax 3	Inese 4		Indac 1	Indes 2	Indas 3	Indaa A
U.S. urban average costs	\$12,526	\$9,761	\$9,774	\$3,794	Narth Central-Gunnised				
Habin Halo d Room			1	1	Ginnaspons-St. Paul Winn.	103	1 13	1 13	97
Urbin Un tes sister.	100	100	100	100	51. L26(3, 948-0)	1 25		1 24	53
hamping and a start	1 100	1 1	1.2	61	Manufalman, bas bracks	24			1 35
A JAMIE STOPPHISE ALBELT	l	1 20		1 11	Country Companyan ar west		1 14		
Raylon Sann			114		Runnin In			ei	
Buttle FLY	1 1-6	1.1			Auton Tan				
Runnard Case	109		100	103	Reinmann Md	62	61		21
Lengarar Ba	103	1 15	1 101	64	Estas Pouse La			31	27
Ca Galler Passesses in 1	114	1	1 112	1 .5	Dellas Tax	1 8			1 24
Bertadulahen Ba Mit	107	1 13	122	1 100	Duran NC	i ii	81	1 1	24
Breating Ba	1 123	101	1 100	1 10	haustan tar	63	1	1	21
Patton Union	1 10	1 102	100	100	Asthmula Teen	87			33
haddestralises store)	101	1	1.0	67	Drando Ela	6		1 1	276
harts Cantoni-			1 20		Wasnington D.C. Md. de	1 1-1	1-2	1	
Centra Sanita Joma	1 100			2.2	bramatropoutan areast	- 15	16	1 11	
Crimanua, Urben 14	101	1 1 2	101	102	west	1 ~			
Chicago 1.2 Josephiesters and	105	115	106	100	Bekersfield Calif	1 +1	1 54	6	1 41
Enhanth Ober Kinand	1	97	1 26	65	Canvar Coin	6	6.	66	
Electricad Dhio	101	1 103	1-2	152	Las Angeles-Long Peach Calif		100	1.1	1
Dautan Chin	51	5.2	51	67	San Suem Caul	47	64	1 1	6 63
Cample Mich	101	1.11	1 101	1-0	San Francisco-Geniand Calif	1 105	1 12	1 1-7	
Green Par mis	69	+6	54	15	Saarta-Suprety (1353	110	123	1.	
industry induced and	1 101	1-7	101	100	hoomatropoutan areas)	6.	1 5	1 11	1 5
Kancas C.r. Wassins	02	62	51	57	Aperelu Maran	114	1 11	1 115	1.5
V and a set of the set	1 104	101	10'	1 ::	ARCHONING STANKS	1 11	1.73	1.0	*74

¹ Carculated from control of stondard budget market basket for urban family of a personal indexes rafect differences in average prices, and zanotons in budget cuantify weights abucits as with otherences in food one-umption batterne, thimmers, evaluability weights abucits as with otherences in food one-umption batterne, thimmers, evaluability of outputs transportation, and life styles in metropolitan and non-entropolitan and non-entropolitan and non-entropolitan and non-entropolitan and non-entropolitan and non-entropolitan and pometropolitan applies weight of styles of energiate subscripting to the batter on energinate weight costs for the neet burgets burchased by personage aways to explore the differences and renter units in medice thruld if distinctions of units that me budget sponthizmens. Total cost indexes also reflect differences in federal, State and usual income texe (quirements).

* Calculated from costs of a climatic sojueted constant market backet for urban

こうちょう ちょう ちったいちょうちょう ちょうちょう
Tamily of 2NVF persons. Todea reflects differences in overage prime levels and slimate requirements

P Galculated framicusta of opnistant market Gasker for lorban family of 4 persons for adjustments were made for visimate. Therefore, under consists on average price levels.

 As stand in 1960–61, For a certified description of these generating boundaries see Standard Metropolitan Statistical Areas, Szecutive Office up the Prescent Bureau of the Boogol, 1957

* Places with 2,500 to 50,000 inhabitants.

This table reproduced from Mark K. Sherwood, "Family Budgets and Geographic Differences in Price Levels," <u>Monthly Labor Review</u>, Vol. 98, No. 4 (April, 1975) P. 10.

きと思うとたちまた

CALCULATION OF 1972 RELATIVE PRICE INDEX BY STATE

	Weighted SMSA Index	Percent State Pop. in SMSA's	Non-Metropolitan Index	State Index Before Rebasing	State Index Rebased
Washington, D.C.	102.000	100.0		102.0	104.0
Maine	100.000	28.206	67	97.8	7.99
New Nampshire	100.000	30.129	67	97.9	99.8
Vermont		0.0	26	97.0	98.9
Massachusetts	113.022	76.975	67	112.5	114.7
Rhode Island	111.500	80.681	67	108.7	110.9
Connecticut	109.909	84.896	16	108.0	110.1
New York	107.006	68.940	47	105.9	108.0
New Jersey	107.068	93.799	97	106.4	108.5
Pennsylvania	96.394	80.860	94	95.9	97.8
Ohio	97.589	30.288	32	96.5	98.4
Indiana	100.735	64.390	92	97.6	99.5
[]] inois	104.164	80.610	92	101.8	103.8
Michigan	100.000	82.332	55	98.6	100.6
Misconsin	58.897	53.064	92	96.0	97.9
Minnesota	97.003	63.167	92	95.2	57.1
Iowa	96.000	36.775	92	93.5	95.3
Missouri	97.621	64.341	92	95.6	97.5
North Dakuta	95.000	12.271	32	92.4	94.2
South Dakota	95.000	14.294	92	92.4	34.2
Hebraska	95.600	44.109	32	93.3	95.1
Kansas	95.000	43.258	92	93.3	95.1
Delaware	100.001	69.719	89	96.7	98.6
Meryland	99.496	25.575	69	93.0	99.9
Virginia	98.540	65.743	89	95.3	1.79
West Virginia	95.500	37.309	89	91.2	93.0

	Weighted SMSA Index	Percent State Pop. in SMSA's	Non-Mecropelitan Index	State Index Before Rebasing	State Index Rebased
North Carolina	97.000	45.347	89	92.6	94.4
South Carolina	96.500	47.715	89	92.6	94.4
Georgia	96.000	56.494	89	92.9	94.7
Florida	97.000	83.994	89	95.7	97.6
Kentucky	95.500	46.400	89	92.0	93.8
Tennessee	96.000	59.847	89	93.2	95.0
Alabama	94.000	61.797	89	92.1	93.9
Mississippi	94.000	20.722	89	90.0	91.8
Arkansas	94.000	38.366	89	90.9	92.7
Louisiana	94.000	62.546	33	92.1	93.9
Texas	93.621	76.719	89	92.5	94.3
Montana	95.000	24.469	90	91.2	93.0
Idaho	95.000	15.973	90	90.8	92.6
Wyoming	95.000	0.0	• 06	90.0	91.8
Colorado	95.000	72.250	90	93.6	95.4
New Mexico	95.000	33.336	90	91.7	93.5
Artzona	95.000	74.416	90	93.7	95.6
Utah	95.000	79.494	90	54.0	95.8
Nevada	94.500	80.675	90	93.6	95.4
Washington	104.000	72.220	06	100.1	102.1
Oregon	104.000	61.354	90	90.6	100.6
California	101.938	93.172	90	101.1	103.1
0k1ahona	94.500	55,195	89	92.0	93.8
Alaska	129.000	43.753	118	122.8	125.2
Hawałi	116.000	81.568	i 05	114.0	116.3
U.S. T01AL	102.000	72.394	16	0.99	100.0

1

10

INCOME DISTRIBUTION DATA FOR 1970 AND 1972, BY STATE AND U.S. TOTAL

	PER15+Y72	PER15+Y70	PER10+Y72	PER10+170
DC	29,538	25,100	55,946	47,700
ME	11,629	11.200	35,272	35,100
NH	17,785	17,300	48,152	47,600
VT	16,618	15,700	42.434	42,200
MA	25,790	25.200	56.157	56.100
RI	19,281	18,800	48,160	47.900
CT	30,362	31,100	61.182	63,100
NY	42,968	26.400	80,651	53,900
NJ	30,252	29,500	60.086	54,600
PA	18,347	18,200	45,682	46,400
0H	22,498	21,600	55, 311	52,400
IN	20,154	19,400	50.709	49,800
IL	25,931	26,400	54,775	56,700
MI	26,226	26,700	59,070	57,200
WI	20,303	19,700	50,602	50,400
MN	21,174	20 300	50,190	49,500
IA	15,730	16,200	41,513	42,800
MO	18,061	17,000	43,756	42,400
ND	16,126	12,800	58,542	34,200
SD	12,853	11,500	33,580	31.800
NE	16,123	14,900	40,935	59,300
KS	16,915	15,800	41,790	40,500
DE	25.000	22.300	52,311	51.400
MD	30,235	28,600	58,714	56,800
۷A	881,55	19,700	41,279	43,600
W W	11,069	9,6000	31,240	29,700

ł

TABLE A1-45 (Cont.)

	PER15+172	PER15+Y70	PEP10+Y72	PER10+Y/0
NC	13,486	11,500	36,382	33,100
SC	12,245	11,000	34,848	33,100
GA	16,875	15,100	40.664	31.400
FL	18,946	16,700	42,178	38.600
KΥ	12,669	11,600	34,121	32.500
TN	12,806	11,500	33.864	32,000
AL	12,924	11,200	33,504	51,200
MS	10,903	8,3000	26,559	24.700
AR	9,2555	8,0000	25,844	24,200
LA	13,024	12,700	34,140	35,600
T X	17,492	16,500	41.239	59,900
61 T	14,742	13,600	40,154	\$6,400
ID	14,090	13,100	38,798	57,400
WY	16,509	15,600	43,495	42,200
C 0	22,094	19,700	50,655	46,900
NM	14,990	14 800	36,019	35,800
AZ	20.151	15,600	46.810	44,400
UT	18,127	16,900	46,191	44,600
NV	50,065	52,200	55,499	54,600
WΔ	23,465	25,800	55,670	52,900
OR	19,058	18,000	47 473	46.200
CA	52,059	26,700	54,904	54.700
0K	13,874	12,900	35,353	34,100
AK	58,804	57 700	63,983	62,500
HI	54,310	32,600	60.628	58,000
US	22,380	20,600	49,580 *	41.200

TABLE A1-46

INTERPOLATION OF MTWNAPT

	RPUT/MTWNAPT (Ratic)	RPUT (Mill. Pass.)	MTWNAPT (Mill. Workers)
1947	2.0638	18287.0	17.721
1948	2.0533	17312.0	16.863
1949	2.0427	15251.0	14.932
1950	2.03222	13845.0	13.626
1951	2.0216	12881.0	12.743
1952	2.0111	12022.0	11.956
1953	2.0005	11036.0	11.033
1954	1.9900	9858.0	9.9075
1955	1.9794	9189.0	9.2844
1956	1.9689	8756.0	8.8943
1957	1.9583	8338.0	8.5153
1958	1.9478	7778.0	7.9865
1959	1.9372	7650.0	. 7.8978
1960	1.9267	7521.0	7.8071
1961	1.9161	7242.0	7.5589
1962	1.9056	7122.0	7.4748
1963	1.8950	6915.0	7.2980
1964	1.8845	6854.0	7.2741
1965	1.8739	6798.0	7.2553
1966	1.8634	6671.0	7.1600
1967	1.8528	6616.0	7.1414
1968	1.8423	6491.0	7.0466
1969	1.8317	6310.3	6.8899
1970	1.8212	5931.7	6.5141
1.971	1.8110	5497.0	6.0707
1972	1.8008	5253.3	5.8344
1973	1.7907	5293.6	5.9123
1974	1.7807	5605.9	6.2963
1975	1 7707	5625.8	6.3543

Al-137

TABLE A1-47

INTERPOLATION OF MTWNACTH

	MTWNAOTH/NEHT (Ratio)	NEHT (Thou. Empl.)	MTWNAOTH (Mill. Workers)
1947	.37069	57038.	21.143
1948	.36028	58343.	21.020
1949	.34987	57651.	20.170
1950	.33946	58918.	20.000
1951	.32904	59961.	19.730
1952	.31863	60250.	19.197
1953	.30823	61179.	18.857
1954	.29781	60109.	17.901
1955	.28740	€2170.	17.868
1956	.27699	63799.	17.672
1957	.26658	64071.	17.080
1958	.25617	63036.	16.148
1959	.24576	64630.	15.883
1960	.23535	65778.	15.481
1961	.22493	65746.	14.788
1962	.21452	66702.	14.309
1963	.20411	67762.	13.831
1964	.19370	69305.	13.424
1965	.18329	71088.	13.030
1956	.17288	72895.	12.602
1967	.16247	74372.	12.083
1968	.15206	75920.	11.544
1969	.14165	77902.	11.035
1970	.13124	78627.	10.319
1971	.12487	79120.	9.8797
1972	.11786	81702.	9.6294
1973	11110	84409.	9.3778
1974	.10479	85936,	9.0052
1975	.09883	84783.	8.3791

TABLE A1-48

	CONSTRUCTION OF	METROPOLITANIZATION INDEX	(NPMET)
	NPMETNUM (Mill. Persons)	NPR (Mill. Persons)	NPMET (Percent)
1950	84.834	151.87	55.860
1951	87.292	153.98	56.690
1952	89.822	156.39	57.434
1953	92.425	158.96	58.145
1954	95.103	161.88	58.748
1955	97.859	165.07	59.284
1956	100.70	168.09	59.906
1957	103.61	171.19	60.526
1958	106.62	174.15	61.221
1959	109.71	177.13	61.933
1950	112.88	179.98	62.271
1961	115.29	182.99	63.005
1962	117.75	185.77	63.386
1963	120.27	188.48	63.807
1964	122.83	191.14	64.262
1965	125.45	193.53	64.824
1966	128.13	195.58	65.514
1967	130.86	197.46	66.274
1960	133.65	199.40	67.029
1969	136.51	220.38	67.784
1970	135. 12	203.81	58.406
1971	145.55	206.22	70.582
1972	151.69	208 23	72.844
1973	154.05	209.86	73.4;4
1974	154.96	211.38	73.310

A1-139/A1-140

APPENDIX A 2 DISCUSSION OF MODEL EQUATIONS

A 2.1 REVIEW OF BASIC STRUCTURE

The WEFA Auto Demand Model is a long-run equilibrium model. Let us define the nature of this equilibrium and analyze departures from it. If all forces acting on the auto market were held constant, the model would tend towards an equilibrium state with actual stock constant and equal to desired stock, total registrations and scrappage constant and equal, and the class-shares of stock, new registrations, and scrappage, also constant and equal.

Now let the desired stock rise. This would (directly) occur due to a rise in income, a fall in auto operating or purchase costs, increases in licensed drivers, increasing urbanization or a decline in non-auto modes of commuting. New registrations would then increase sharply, and the scrappage rate would also fall. Thereafter, new registrations and total scrappage would oscillate more and more gradually about their new (higher) equilibrium levels.^{1/}

Should a change occur which alters the composition of the desired stock, such as changes in auto costs, income and its distribution, family size, geographic shifts in population, or changes in age structure, then the new registrations and scrappage shares of the classes would

 $[\]frac{1}{A}$ ctual stock may temporarily rise above desired but this tendency is extremely "damped".

shift. Again, the initial response would be proportionately greater than the initiating desired share changes.

Here the response is more complex because total desired stock also changes. Suppose a shift towards smaller cars occurs, then the average cost per mile of the desired stock is reduced, increasing desired stock and initiating the pattern of aggregate responses already outlined.

In certain cases there would be a disturbance from a different direction. For instance, an increase in the price of gasoline would reduce vehicle miles traveled. A fall in mileage per auto would tend to reduce scrappage, reducing new registrations commensurately. Conversely, increased mileage per vehicle would indirectly induce an increase in new car sales.

A 2.2 CROSS-SECTION EQUATION ESTIMATES

The equations for desired stock per family and desired shares by class for the five size categories were estimated cross-sectionally using 1972 data for 47 states, excluding Oklahoma, Alaska, Hawaii, and the District of Columbia. The data for Oklahoma are incomplete, and the others were excluded due to their special characteristics.

We elected to use 1972 as an "equilibrium" year. It was immediately prior to the oil crisis, and the economy was reasonably stable with moderate unemployment and inflation. Pc lution control had yet to make a major impact, and smaller domestic cars had been present in the market for several years. Therefore we assumed actual stock (by state) was equal

to the desired level, and we approximated the desired shares by averaging new registrations shares for 1971-72. $\frac{1}{}$

The estimated equation for desired stock per family unit is presented on page A2-25. Estimates were also made in linear form, $\frac{2}{}$ and with the percentage of families earning \$15,000 or more in 1970 \$ (PER15+) in "level" form as opposed to the "odds" formulation adopted. The "odds" variable yielded a slightly higher statistical significance.

Since we were concerned with an equilibrium relationship it seemed reasonable that a "permanent income" concept would be the most appropriate. This form implies that families gradually adjust to a given change in real disposable income $\frac{3}{}$ The estimated relationship is positive as expected and statistically strong, the income elasticity being 0.56.

As discussed in Chapter 3 we hypothesized "income saturation", i.e., above a certain income level further increases in income would not cause a family to increase its stock at the previous rate. $\frac{4}{2}$ Therefore, PER15+ enters with a negative sign, moderating the effects of income fluctuations, $\frac{5}{2}$ the elasticity being roughly 0.13 (with the "odds" form the elasticity varies with PER15+, being higher than the coefficient when PER15+ is less than 50%).

 $\frac{1}{1}$ More years would have been desirable but these would have been unrepresentative for smaller cars.

 $\frac{4}{We}$ experimented with various levels, 10+, 15+, 25+. The 15+ was statistically superior.

 $\frac{5}{PER15+}$ and income usually move in the same direction.

 $[\]frac{2}{2}$ Throughout the estimation process linear forms were found to yield equivalent results to log-linear for almost all model equations.

 $[\]frac{37}{100}$ The weights assigned to current-year and lagged income are 4, 3, 2, 1. Thus 40% of the adjustment to a given income change occurs in the year of the change, 30% the next year, etc.

Our measure of combined purchase and operating costs, capitalized cost per mile, is used here as an equilibrium concept, being the average of the class costs per mile weighted by their desired shares, i.e., it is the desired fleet cost per mile. The sign is negative, as hoped, with a reasonable elasticity of 0.2. The statistical power is somewhat low, probably due to the fact that because of data limitations capitalized cost per mile by class has a somewhat limited variation across states. $\frac{1}{2}$

Licensed drivers per family has a strong positive impact. More licensed family members implies a greater usefulness of additional cars. This variable is clearly significant in explaining variation across states, even after allowing for income levels.

Although we experimented with a variety of measures reflecting transportation system characteristics, only the numbers of people (per family) using non-auto transport to work (MTWNA) was found to be significant, albeit not overwhelmingly.^{2/} Its elasticity is very low, only -0.05, so that very large movements in MTWNA/FM are required to significantly affect desired stock.

Finally, the metropolitan population is positively associated with desired stock. NPMET is defined as the percentage living in SMSA's, and this finding therefore reflects the large suburban populations, with a higher number of cars per family, resident in states with large conurbations.

We experimented a great deal with the specifications for the desired

^{1/}See Appendix A1, Section A1.4.3, page A1-15.

 $[\]frac{2}{1}$ It is, of course, quite likely that many factors not measurable for the cross-sectional analysis do have a significant impact.

shares by size-class. The "odds" form that we adopted for the dependent variables has the desired property that the predicted share will lie between 0 and 1. The greatest difficulty was experienced in modeling the small car shares. The approach we eventually adopted was to model the combined subcompact and compact share and then to estimate the subcompact part of the combined share.

This procedure not only produced a better 'fit' in the cross-section but also was much more reasonable when simulating over time. It is possible that this finding implies a closer substitution between subcompacts and compacts than, say, between compacts and midsize. Having adopted this approach for these classes we experimented with a similar treatment for mid-size and full-size, but this yielded very poor results.

The relative capitalized cost per mile term appearing in all the desired share equations (see page A2-25) is of the form own capitalized cost per mile relative to the desired share weighted average of all other classes' capitalized costs per mile. Thus in the case of subcompacts this reduces to a simple ratio of subcompact cost per mile to compact cost per mile.

In looking at the sensitivity to costs, it should be born in mind that changes in the capitalized cost per mile will be fairly small relative to initiating changes in, say, purchase prices or the price of gas. $\frac{1}{2}$

In terms of elasticity (all of which are negative as expected, see page A2-4) we observe the greatest sensitivity for full-size, and subcom-

 $[\]frac{1}{2}$ See Chapter 4.0.

pacts versus compacts, both having elasticities (evaluated at the mean share values) of over five. Next in magnitude come the combined smallcar, and mid-size, with elasticities of 1.5 to 2. Finally, the luxury class has a very low cost elasticity of less than 0.5. The coefficients for luxury and the combined class have substantially lower statistical power than the others.

The second variable of critical overall importance is the relationship between income per family and average cost per mile. If all costs per mile increased in the same proportion across the board one might expect some "trading down" to take place. Equally, increasing incomes relative to costs implies increasing affluence. We would therefore expect full-size to the positively affected (conceivably, luxury could be also) and smallcars negatively affected. Mid-size is indeterminate 'a priori', because general inflation would imply gains from full-size but losses to compacts.

This is indeed the pattern we found (again, see page A2-27), with a full-size elasticity of +0.55, and for small-cars an elasticity of -0.74. Mid-size has a slight negative net effect (-0.13), and subcompacts has an elasticity just under half that for the joint small-car class (-0.27). This income effect was statistically significant everywhere except mid-size, where it is weak, and luxury, where it was completely insignificant.

The last economic activity variable to have an impact is income distribution--PER15+. It has two effects. First it tends to shift preferences from full-size to luxury, a logical result. Secondly, the greater the proportion of higher income families the larger the small car share. This again is logical, reflecting the second car status of many subcompact

and compacts cars (PER15+ was insignificant in the separate subcompact and compact equations initially tested).

Turning to the demographic effects, the proportion of families with three or four members tends to increase the mid-size share at the expense of full-size, these being almost exactly offsetting impacts. Full-size is positively affected by the proportion of families with five or more members, this relationship being somewhat weaker. The conclusion is intuitively appealing: larger families buy large cars, smaller families tend to prefer mid size cars.

For smaller cars we find the younger age group (from 20 to 29) positively effects the combined share, as well as a weaker preference for subcompacts within the small car share. Running costs and their "sportier" image may well be factors here. A little surprisingly, licensed drivers per family tends to increase subcompact's share relative to compact. This may indicate the purchase of more subcompacts as third cars. Finally, metropolitan residents have a slight preference for luxury cars (note that NPMET is not logarithmic because of being zero for a few states).

The regional dummy variables were persistently highly significant, irrespective of the numbers of types of economic and demographic variables we included in the specifications. They may partly reflect differing driving habits that we could not estimate due to data limitations; they may reflect cost differences that we were forced to assume away in computing cost per mile; or they may in fact accurately represent systematic regional taste differences.

We find New Englanders $\frac{1}{f}$ favor small cars but purchase fewer luxury,

÷ •...

^{1/} The regions used are the Census definitions. Using state abbreviations: New England is ME. NH, VT, MA, RI, CT; West South Central is AR, LA, TX; Mountain is MT, ID, WY, CO, NM, AZ, UT, NV, and Pacific is WA, OR, CA.

while West South Central buyers follow an opposite pattern. Mountain and Pacific Region residents are strongly biased towards small cars, especially subcompacts. Fewer mid-size cars are purchased in the Mountain Region.

A 2.3 TRANSLATION TO TIME-SERIES

Due to its importance, the estimation of the 'historical' values for desired stock and its composition was discussed in detail in Chapter 3. The adjustments made in the predicted shares were necessitated by the varying model offerings over the earlier period, while for the total stock we had to adjust for the asymetric influence assigned to PER15+.

What we might do at this point is to briefly analyze the imapcts over time of the determinants.

Both licensed drivers per family and commuting trends have reflected the automobile's increasingly important role in society, and have made modest contributions to the growth of desired stock per family. It is unlikely that either will play a very important future role.

A major positive influence has been permanent income, which has increased strongly from its 1958 low, falling in 1969-70 and again in 1974-75. Because of smaller families and more single individuals living separately, future family income growth may be less rapid than in the past. The offsetting impact of PER15+ only became very significant during the 1960s, after rising rapidly from very low 1950s levels. It may also be expected to grow at quite modest rates.

A significant offset to income has come from rising real average capitalized cost per mile. Costs by class have risen by amounts varying from over 75% to over 100%, significantly more than the 70% rise in overall consumer prices, especially during the 1970s. Moderate continued growth in real auto costs would seem probable.

The metropolitan population has risen from 60% in 1958 to 73% in 1974, making a not-insignificant contribution to desired stock growth. Like licensed drivers per family, the scope for continued growth is limited.

All classes have tended to share fairly equally in cost increases, with import: substantially outpacing domestics (their costs per mile were initially lower). Taking the period as a whole, therefore, relative costs have probably been fairly neutral on balance.

The same is essentially the case for income relative to costs, although, like relative costs, short-run swings have undoubtedly caused large shifts in class shares.

The proportion of families with five or more members rose through the mid-1960s, favoring larger cars. Since then it has fallen sharply, and will continue to do so. Families with 3 or 4 members fell slowly throughout the sample period. The same trends reducing the larger family share may stablize this decline, limiting full-size growth.

Finally, the population between 20 and 29 years old grew strongly throughout most of the period, spurring small-car sales. We already know that by 1995 this population group will have substantially declined,

tending to reduce the small-car shares.

A 2.4 TIME SERIES EQUATION ESTIMATES

A 2.4.1 NEW REGISTRATIONS AND SCRAPPAGE

The philosophy behind the equation specifications for both new sales and scrappage is that these variables should closely respond to movements in desired stock, if the latter is indeed a meaningful concept (as estimated by the desired stock equation). $\frac{1}{2}$

One would also expect that a 1% change in desired stock would induce greater than 1% changes in both new sales and scrappage. The other variables included in the equation are primarily "speed of adjustment" factors.

The equations for total new registrations and scrappage are presented on page A2-30. In both cases the dependent variable is expressed as a "rate". New sales are scaled by the previous year stock less current year scrappage, while scrappage is correspondingly scaled by previous stock plus current new sales. $\frac{2}{}$ This technique thus represents each flow relative to the stock that it is augmenting or decreasing.

Clearly new registrations and scrappage are highly simultaneous. Simultaneous estimation, however, yielded results indistinguishable from

<u>1</u>/Scrappage tends to move inversely to, and new car sales parallel, movements in desired stock. ("ceteris paribus").

^{2&#}x27;Scrappage less "given" (predetermined) scrappage is estimated. Surviving cars over 20 years old are automatically scrapped.

ordinary least squares. This characteristic was, happily, a common occurrence whenever we applied two- or three-stage least squares techniques to model equations.

In both cases the principal determinant is desired stock relative to actual stock excluding the dependent variable. Thus the rate of new car sales and the rate of scrappage are functions of the 'gap' between desired and actual stock. Both new sales and scrappage respond strongly to movements in desired stock, with elasticities (positive and negative, respectively) of just under 4.

New registrations also fluctuate in response to income variation-current year income relative to permanent income. The high coefficient is misleading--since current real disposable income per family has a weight of 40% in the demominator only a sharp change in income relative to past trends will substantially affect the new-car sales rate.

Finally, consumer resistance to sharp increases in purchase prices is indicated by the price index of current to lagged prices (holding the sales-mix constant) which has an elasticity of -1.3.

The scrappage rate is strongly affected by the average age of stock, as it must be, and a strong influence is also exerted by changes in vehicle miles traveled per auto. Increasing utilization of the stock thus increases scrappage, with the largest effects occurring with 1 and 2 year lags.

Purely cyclical effects derive from the remaining two variables. The scrappage rate falls slightly when unemployment rises; and if old

car prices rise relative to a scrap metal price index, the rate is again slightly reduced.

As noted in Chapter 3, the philosophy behind the new registrations shares equations is simple. Sales by class respond directly to changes in desired stock shares at a rate proportional to the divergence between actual and desired stock. Although simple in concept, these specifications were statistically very successful and possess interesting dynamic properties.

The equations are presented on page A2-32. Note that the TMseK-SC terms are defined analogously to the denominator for total new regis: **ons discussed above, <u>i.e.</u>, they are last year's stock less current sc .gr for the class as a share of the total. We estimate the functions using as the dependent variable the difference (in logs: the ratio) between the new sales share and the desired stock share, since in equilibrium these must be equal. Transferred to the RHS this constrains the coefficient to be one.

Holding the shares of stock less scrappage hypothetically constant, we see that the initial response to a desired share change is substantially greater than one for each class. For small perturbations (since both are in "odds" form) the elasticities are equal to the coefficients. Therefore, a 1% increase in the desired share would induce a 1.4% increase in the samll car new sales share, a 1.7% increase for subcompacts' share of small car sales, 1.7% also for luxury, 1.8% for full-size, and a 1.9% increase in the mid-size new sales share.

Initially there would be no real change in the share of previous stock less scrappage, but this would then rise with increased new car sales, progressively reducing the gap between actual and desired stock shares and thus moderating the new car sales response. Typically new car sales will overshoot the equilibrium point, so that the adjustment pattern to a one time shift in desired share is a damped oscillation about the new equilibrium share.

Scrappage by class and hence scrappage shares are computed by identity given new registrations and the scrappage rates that were developed (see Appendix Al), since these rates are equal across classes.

As regards the division between foreign and domestics, the behavioral relationships estimated were judged to be inadequate for forecasting purposes. Our first approach was to estimate the domestic share of the size-class (for subcompacts, compacts, and luxury) with our 1972 cross-section data.

Reasonable results were obtained but these produced unacceptable time series simulations. The estimated desired domestic subcompacts share went to zero for 1968 back, and jumped to 50% for 1073; domestic compact's share fell to under 20% for 1968 back then rose to 99% in 1974; and the domestic luxury share lies consistently below the actual sales share, falling as low as 71% in 1968 (when the sales share was 93%). These equations are presented on page A2-34.

We considered that this approach was conceptually invalid as well as empirically unworkable. Domestics and foreign cars compete in

terms of actual sales to the consumer who has already decided to purchase a particular size-class vehicle. It therefore may not be theoretically sound to estimate a "desired" domestic share.

Therefore, time-series equations were estimated for the domestic shares of new registrations by class. Here we found tremendous instability in terms of the behavioral content. Domestic shares--especially for subcompacts--have undergone such wide fluctuations that it appears impossible to sustain the hypothesis underlying time-series regression analysis: vis. that there exists a stable underlying set of economic relationships.

We did obtain equations that fit the sample period (see page A2-36), and which looked reasonable in terms of relative costs per mile, and the use of variables attempting to capture the changes in model offerings for subcompacts (the lack of domestics pre-1970), and service facilities for compacts and luxury (the dealership variables).

The elasticities with respect to the included exogenous variables proved to be the stumbling blocks. Very small changes in assumptions produced huge swings in the shares, making these equations unmanageable and their implied content dubious. These equations were therefore reluctantly discarded. The marketplace competition between foreign and domestics has changed so radically in nature from the 1950s and 1960s that we cannot capture the economic determinants.

A 2.4.2 VEHICLE MILES TRAVELED

Our approach here is to estimate vehicle miles per family in terms of the utilization of the stock, that is, VMT does not (directly)

determine the size of the stock or additions to it, but does involve its intensity of use. In this case we must deal with the age distribution of the stock, since newer cars are driven more miles than old ones and running costs, gasoline and repairs especially, also vary by vintage. The VMT equation is given on page A2-39.

To allow for the impact of a changing age distribution we took our estimates of mileage by vintage for 1972 used in computing the capitalized costs per mile.¹/ These constant mileage weights were then applied to the estimates of mid-year stock by vintage over time and summed to obtain an index of vehicle miles (WTDMVINT). This reflects variations in mileage due solely to fluctuations in age-composition. It is an index that equals the actual 1972 mileage (VMT/WTDMVINT = 1.0 in 1972), and it diverges above actual VMT prior to and after 1972.

The real gas cost per mile for the fleet is computed using a vintage-weighted fleet fuel efficiency measure, AVMPGVINT. We first computed average class mpg as a weighted sum of city and highway, the weights varying over time (urban driving has increased its share steadily). Then we used new registrations in the year of sale to weight each class to form an overall average by vintage. Thus, for 1974, the ten year old vintage class weights were the 1964 levels of new registrations.

 $[\]frac{1}{N}$ Note that data on mileage by vintage do not exist over time. The 1972 mileage per vintage was increased slightly to align the total. We also had to impute annual mileage for cars 11-20 years old.

 $[\]frac{2}{N}$ Note that scrappage rates are perforce assumed equal across classes. We do not know to what extent mpg falls solely due to age.

Finally, these averages were weighted by each vintages' share in that year to obtain the fleet average over the entire period. The overall average therefore reflects changes in city and highway mpg by class, changes in the urban fraction of total mileage, changes in fleet composition by class, and changes in the stock age-distribution.

Real gas cost per mile has a strong negative impact on mileage per family, the elasticity being $-0.24 \cdot \frac{1}{}$ We also estimated a repair cost variable--along similar lines to AVMPGVINT--but this proved to be insignificant, probably because they vary as much with time as with mileage--at least for the 'typical' family.

Once again we found an interaction between income and income distribution. This time the results indicate that mileage per family tends to be positively related to income distribution and negatively affected by the level of income. Since PER15+ normally will respond more rapidly to current income change than RDIP4/FM, the net effect of an income increase will usually be positive (and vice-versa).

A 2.4.3 MILES PER GALLON

The relationships for miles per gallon by class are estimated in the same fashion as those estimated using model-specific data. Our estimates of mpg by class are regressed on the class-average inertial weight, engine displacement, transmission type, and fraction of the

 $[\]frac{1}{0}$ One would expect gas price increases to induce a movement towards small cars, slowly increasing AVMPGVIAT.

class with 4 or 6 cylinders. The equations are run across all classes, over the period 1948-74, $\frac{1}{2}$ using a "stacked" regression technique which constrains the coefficients to be the same across classes (see page A2-40).

The results are very close (as expected) to the initial modelspecific estimates. $\frac{2}{}$ The predicted class mpg's are appropriately weighted to yield average mpg by class, domestic mpg, foreign mpg, and average new and existing fleet mpg.

Also estimated are very simple "linking" equations between our estimates of actual driving mpg (derived from <u>Consumer Reports</u>) and the EFA "laboratory test" measure. Since we wished to infer EPA results from our class mpg estimates, the equations are estimated with the latter as the dependent variable (no "causation" is implied!)

We used data for all cars tested by the EPA and <u>Consumer Reports</u> for 1975 and 1976 that had the same engine and transmission.^{3/} We then translate these equations directly by substituting our class mpg projections for the independent variable to yield EPA projections by class, adjusting the intercept in the case of significant variations by class.

The results are reasonable (see page A2-43), with the higher EPA city estimates clearly indicated, and some small (but significant) divergences between classes, with elasticities (evaluated at the mean) of virtually one in both equations. These relationships are limited. The

 $[\]frac{1}{Except}$ domestic subcompacts for 1955-57 when none were sold. $\frac{2}{See}$ Appendix Al.

 $[\]frac{3}{A}$ Although the sample is primarily limited by the number of <u>Consumer Reports</u> tests, the EPA did not always test every engine size.

sample may not be very representative--<u>Consumer Reports</u> tends to focus on more "utilitarian" models, rarely reviewing luxury or 'sportier' cars. The EPA fails to indicate what, if any, optional equipment (or type of tire) was on the vehicle. Note also that the model data only cover two years. $\frac{1}{2}$

The class city and highway EPA estimates are similarly aggregated to yield the same measures as the original mpg values. We also project an average for domestics computed using a constant 55% urban driving fraction.

A 2.4.4 NEW CAR PRICES

In the model we distinguish the four price components: the 'stripped' lease purchase, plus option: expenditures, plus transportation, plus sales taxes. The average tax rate is projected exogenously, but the others are predicted endogenously using the estimated behavioural relationships discussed in this section. Like any other endogenous variables, these prices may be exogenised if desired.

The base and options prices for domestics were viewed as mark-ups over cost. A production cost index (PINPUTA) was developed, being a weighted sum of input prices where the weights are the 1972 input-output coefficients for the autos sector.

We elected to model the average $\frac{2}{}$ base and options prices across all classes. The prices by class slowed a strong tendency toward propor-

2/ Fixed-weighted by the 1972 new registrations shares.

^{1/} We found no change in the relationship between 1975 and 1976. Note that the EPA procedures prior to 1975 were very different.

tional movements over time. There tend to be unique year to year competitive forces that will temporarily restrain price increases for a class, but ultimately each must cover its production costs, and make its contribution to overhead and profits.

The results were very reasonable (page A2-45). For base prices the elasticity is very slightly below unity, which is the hypothesized result. Further, prices are also affected by the change in costs, with an elasticity of 0.43. This may reasonably be interpreted as an "expectations" effect. If the rate of inflation accelerates, prices are increased slightly more in order to anticipate faster inflation.

For the options price the cost index shows an equally strong relationship. The elasticity of 0.76 reflects the fact that options prices have tended to fall relative to other costs. The class prices for both are driven off the two averages by percentage ratios which are essentially fixed or exogenously specified. Thus future changes in relative class positions may be simulated.

For foreign base prices we constructed a weighted index of export prices and used this as the independent variable. The export price indices for the major importers, Japan, Germany, Italy, France, U.K., and Sweden, were weighted by their annual shares of imports. Here the price elasticities were allowed to vary by class (page A2-46). For subcompacts the elasticity was 0.7, for compacts 0.9, and for luxury 1.05, which seems a reasonable relative ordering.

Consumers expenditures on options were estimated in a classical

demand approach as determined by income and prices. The general form adopted for these equations used our permanent income per family measure as the income term, and the fixed weighted average maximum options price relative to the overall consumer price index was used as the price variable.

In each case the dependent variable is the ratio of options expenditures by class relative to the class maximum options price. These "shares" are estimated in "odds" form so that actual expenditures may never exceed the maximum options cost. Unless some completely new options are added in the future, making our estimated 'maximum' obsolete, these values should represent a ceiling for expenditures.

Permanent income is significant in each case, with coefficients ranging from 1.7 to 2.9 - subcompacts being the highest. In most cases RDIP4/FM was marginally superior to current period income (RDI/FM). Since a common specification was considered desirable it was adopted for all equations. Almon Lags on RDI/FM were less successful in terms of statistical power when tested for each class.

The average 'real' maximum options price was everywhere highly significant, with coefficients ranging from 4.6 (for subcompacts) to 6.0 (for mid-size). Again, we used the average price in the interests of having a consistent specification across classes.

Interestingly enough, after allowing for the sometimes limited offerings (and sales) in the earlier part of the sample period (subcompacts and compacts especially, of course), the average price

series was statistically at least as good as the 'own' price series for all the classes, supporting the previous observations made above.

Since the dependent variables are "odds" the elasticities are not readily apparent. For subcompacts, the income elasticity is 2.5 and the price elasticity is -3.9. An additional variable that is required for subcompacts was PER15⁴. This effect can be interpreted in a similar fashion as previously. Its elasticity is -0.7. When tested for the other classes, PER15⁴ was not found appropriate, an interesting result.

The income elasticities for compacts, mid-size, full-size, and luxury were 1.4, 1.1, 0.9, and 0.6 respectively. The corresponding price elasticities are -3.6,-3.7, -2.7, and -1.2, respectively. These results seem reasonable.

The final components of pre-tax total purchase costs are transportation charges. These were estimated for each class as a straightforward function of the U.S. price index for transportation. For the subcompact, compact, and luxury classes the estimation was constrained such that the price elasticities were equal for foreign and domestic costs, thus the joint estimation leaves only the intercept free to vary (See page A 2-56).

In each case the relationship with the transportation index was very strong. The elasticities all lie between one and two: from lows of 1.19 and 1.15 for subcompacts and luxury, respectively, to the essentially equal levels of 1.8, 1.6, and 1.7 for compacts, mid-size, and full-size.

A 2.4.5 USED CAR PRICES

Given the limitations of the data, and the size of the modeling effort involved in estimating prices by vintage, our approach was to simplify the problem as much as possible. Our fundamental hypothesis is that prices by vintage for a particular class should move together. As discussed in Appendix A.1, we were able to develop a one-parameter exponential decay function that generates successive price relatives of the form:

PR_i = (Price of Vehicle Aged i/Price of Vehicle Aged i-1)
for i = 2, ..., 20)

In this way, given estimates of new car prices and the one-year price relative to new, successive prices by vintage can be generated. From these prices we estimate by identity the average price of old cars, PUOLD, which enters the scraptage equation (see Appendix Al for details; 'old' is defined as aged 8 years or more).

As an intermediate step we estimated a function for the volume of used car transactions, PURMVUA. Since only seven years data existed the weak statistical results were not surprising (see page A2-59). Nevertheless, we were able to relate PURMVUA (relative to current stock) to the change in new registrations (increased new car sales should initially imply increased used car transations) and to the trend in new car sales (sustained high new car demand replaces used car purchases).

The predicted values for PURMVUA were used to estimate the one

year old price relative equations. We wanted to insure that the pricerelative equations were not badly affected by the weak PURMVUA equation. This procedure prevents the price-relatives from being distorted by actual PURMVUA movements that we could not predict with the equation.

Our hypothesis with respect to the price-relative equations $\frac{1}{2}$ is that a high level of used car transactions relative to new car sales should (ceteris paribus) tend to push used car prices up in an equilibrating response. The positive signs were therefore expected, (page A2-59), but the high statistical power is somewhat surprising in view of the poor quality of the PURMVUA equation.

A second influence could come from new car prices. Increasing new car prices would lower the price-relatives, unless sufficient new car purchasers were driven into the used car market to induce a larger percentage change in used car prices. We find that new car prices have a positive effect for subcompacts and compacts, but a negative impact for the larger cars. This implies that buyers of larger cars are less sensitive to price increases than small-car buyers, a reasonable result. Finally, for compact and mid-size, there is a third effect: if the new car sales share increases, the user car price tends to rise. $\frac{2}{}$

The final equation estimated relates the <u>Automotive News</u> average wholesale price to our vintage-weighted average used car price, PUSEDR,

 $[\]frac{1}{1}$ The price-relatives are in "odds" form so that predicted values must lie between 0 and 1.

 $[\]frac{2}{N}$ Note that there is very little variation for mid-size. Hence the standard error is low despite the low \mathbb{R}^2 .

which is computed by identity given prices by vintage. The close relationship is an encouraging result for our methodology.

A 2.4.6 INCOME DISTRIBUTION

Income distribution was found to have a strong and pervasive influence on the market for automobiles. In order to ensure that projections of the proportion of families with real incomes of \$15,000 or more were consistent with projections of income levels an equation relating the two was incorporated into the model coding (see page A2-63).

Several different forms were estimated. The one finally adopted represents PER15+ (in "odds" form) as a simple function of current and lagged real disposable income per family unit. To some extent the predicted levels trend through some of the historical fluctuations in PER15+, hence the modest Durbin-Watson statistic. However, the income elasticities are clearly appropriate in relative ordering, and this form yielded by far the most reasonable historical simulations. $\frac{1}{7}$

 $[\]frac{1}{The}$ elasticities with respect to PER15+ are slightly less than the log coefficients.

TABLE A 2-1

DESIRED STOCK AND SHARE EQUATIONS

1. Desired Stock Per Family

Ln (KEND/FM) = -1.90559 + 0.563344 *Ln* (RDIP4/FM) -0.100994 *Ln* (PER15+/(100-PER15+))- 0.199527 (2.40) (3.13) (1.92) (1.92)

*l*¹/₁ (CPHTTCAP/PC) + 0.421187 *l*¹/₁ (LD/FM) - 0.0536642 *L*¹ (MTWNA/FM) + 0.0990056 (NPMET/100) (1.48) (1.48) (1.61)

= 0.461 SEE = 0.0596

5²

II. Combined Share of Subcompacts and Compacts

+ 0.540311 *Lm* (NP20.29/FM) + 0.445103 (DUMNEW) - 0.228363 (DUMNSC) + 0.321488 (1.79) (2.07) (3.93)

(DUMNTN) + 0.559391 (DUMPAC) (4.46) $\tilde{R}^2 = 0.755$ SEE = 0.1591

All equations are estimated over 47 states excluding Oklahoma, Alaska, Hawaii, and the District of Columbia. Variable definitions are presented on page A 2-28, 29. Notes:

TABLE A 2-1 (Cont.)

111. Share of Subcompacts in Combined Subcompacts and Compact Share

 $\frac{ln}{1-\text{SHRS/SC}} = 0.665464 - 11.9101 ln (CPMS/C) - 0.599591 ln (YDI/FM/SC*Q) + 0.225044 - 1-SHRS/SC - (.71) (5.55) (2.73) (0.86)$

и (иР20/29/FM) + 0.702456 и (LD/FM) + 0.321199 (DUMMIN) + 0.494263 (DUMPAC) (2.67) (5.68) (5.61) (5.61)

SEE = 0.1315 $\bar{R}^2 = 0.792$

IV. Mid-Size Share

 $L_{M} \left(\frac{SHRM}{1-SHRM} \right) = 0.211039 - 1.98095 \ Ln \ (CP:M/T-M) - .161133 \ Ln \ (YDI/FM/CT*Q) + 0.785861 \\ (4.73) \ (1.31) \ (1.31) \ (4.73)$ ZM (FM3+4/FM) + 0.162809 (DUMNEW) - 0.125991 (DUMMIN) (4.01) (3.65)

SEE = 0.0779 $\bar{R}^2 = 0.683$

V. Full-Size Share

 $ln \left(\frac{SHRF}{1-SHRF}\right) = -1.84714 - 8.84702 ln (CPMF/T-F) + 0.831944 ln (YDI/FM/CT*Q) - 0.506012 (6.11)$

SEE = 0.1070R² = 0.865 Notes: All equations are estimated over 47 states excluding Oklahoma, Alaska, Hawaii, and the District of Columbia. Variable definitions are presented on page A 2-28, 29.

TABLE A 2-1 (Cont.)

VI. Luxury Share

Un (<u>-SHRL</u>) = - 2.88455 - 0.467677 *In* (CPML/I-L) + 0.209938 *En* (PER15+) + 0.00183016 (NPMET) 1-SHRL . (9.26) (0.72) (0.72)

- 0.298623 (DUMATEW) + 0.203160 (DUMASC) (4.66) (2.20)

 $\frac{1}{R}^2 = 0.519$ SEE = 7.1303

Elasticities for Desired Share Equations

E.G. A 1% increase in CPMSC/I-SC would reduce SHRSC by 1.74% (not % points).

	-	~	3	4	S	9	7	8
	CPMX/T-X	YD1/FM/CT*Q	PER15+	HP20.29/FM	L0/FM	FM3+4/FM	FM5+/FM	NPME
SHRSC	-1.74	-0.74	+0.24	0.34	* 8 8	6 8 9	6 6 8	6 8 8
SHRS/SC	·2.27	-0.27	4 1 8	0.10	0.31	6 6 8	8 8 8	0 0 0
SHRM	-1.59	-0.13		:	8 6	0.63	8 8 8	6 8 9
SHRF	-5.91	0.56	-0,34	6 8 8	8 8 8	-0.51	0.11	8 6 9
SHRL	-0.43	:	0.19	8	1	8	; 8 8	0.0

Notes: All equations are estimated over 47 states excluding Oklahoma. Alaska, Hawaii, and the District of Columbia. Variable definitions are presented on page A 2-28, 29.

TABLE A 2-1 (Cont.)

Symbol	Definitions
CPMF/T-F	Cost Per Mile for Full-Size Cars Over Desired Share Weighted Cost Per Mile for All Other Classes
CPML/T-1	Cost Per Mile for Luxury Cars Over Desired Snare Weighted Cost Per Mile for All Other Classes
CPMM/T-M	Cost Per Mile for Mid-Size Cars Over Desired Share Weighted Cost Per Mile for All Other Classes
CPMSC/T-SC	Cost Per Mile for Combined Subcompact and Compact Cars (Weighted by De- sired Shares) Over Desired Share Weighted Cost Per Mile for All Other Classes
CPHS/C	Cost Per Mile for Subcompacts Over Cost Per Mile for Compacts
CPMTTCAP	Desired Share Weighted Cost Per Mile (Includes all Classes: Domestic and Foreign)
DUMNEW	Dummy for New England States (Equals 1.0 for Mountain; 0.0 otherwise)
DUMMEN	Dummy for Mountain States (Equals 1.0 for Mountain; 0.0 otherwise)
DUMPAC	Dummy for Pacific States (Equals 1.0 for Pacific; 0.0 otherwise)
DUMWSC	Dummy for West South Central States (Equals 1.0 for West South Central; 0.0 otherwise)
FM	Number of Family Units (Equals number of families plus number of unre- lated individuals)
FM3+4/FM	Number of 3 and 4 Member Families Over Number of Family Units
FM5+/FM	Number of 5 or more Member Families Over Number of Family Units
KEND/FM	Number of Cars In Operation At Year End Over Number of Family Units
LD/FM	Number of Licensed Drivers Over Number of Family Units
MTWNA/FM	Number of Persons Not Using An Automobile To Travel To Work Over Number of Family Units

•
ب
5
0
0
ニ
-
_
1
01
-
9
L LL
-
_
<u> </u>
9
÷

Symbol .	Definitions
NPMET	Percentage of Population Living in SMSA's
NP20.29/FM	Number of Persons in Resident Population Between 20 and 29 Years Old Over Number of Family Units
PC	Consumer Price Index, All Items (Note: Is D'vided by 125.3 to convert *rom 1967 = 100 base to 1972 = 1.0 base)
PER15+	Percentage of Families (Excluding Unrelated Individuals)Earning \$15,000 or more in 1970 dollars
RDI/FM	Permanent Real Disposable Income: Weighted Average of Current and Lagged Disposable Income (4. 3, 2, 1 weights) Deflated by The Current Year Con- sumer Price Index
YD1/FM/CT*Q	\$ Disposable Income Over Number of Family Units Over Fixed Weighted Cost Per Mile (Cost per mile for subcompacts and compacts, cost per mile for mid-size, cost per miles for full-size, and cost per mile for luxury when weights are desired share in U.S. Market for 1972)
YDI/FM/SC*Q	<pre>\$ Disposable Income Over Number of Family Units Over Fixed Weighted Cost Per Mile for Subcompacts and Compacts (Weights are desired U.S. shares in 1972)</pre>
SHRF	Desired Share of Full-Size Cars
TidhS	Desired Share of Luxury Cars
SHRM	Desired Share of Mid-Size Cars
SHRSC	Desired Combined Share of Compact and Subcompact Cars
SHRS/SC	Desired Share of Subcompact Cars in Total Subcompact and Compact Cars

TABLE A 2-2

TOTAL NEW REGISTRATIONS AND SCRAPPAGE

I. New Registrations (ONVUANR)

+ 6.03907 ($\frac{RD1/FM}{RD1P4/FM}$) - 1.26683 ($\frac{PUTOTNRL}{PUTOTNR(-1)}$) - 2.9151 (35.2) D.W. = 2.28Period of Fit: 1954-1974

II. Total Auto Scrappage (SCMVUA)

+ 2.910301*n* (AVAGE 0-20) - .145089 *ln* (<u>PUOLD</u>) -.338149 *ln* (HRUT) (5.32) (5.32) $a_0 = 2.23399$, $a_1 = 4.19538$, $a_2 = 3.45071$ (2.42) (3.60) $a_2 = (2.86)$ DW = 2.60+ $\sum_{i=1}^{2} a_i \ln \left(\frac{VMT/K}{VMT/K(-1)}\right)_{-i}$ Period of Fit: 1958-1974 ₁=0

Note: For definitions see page A 2-31

TABLE A 2-2 (Cont.)

Definitions:

AVAGE()-20	- Average Age of Stock, Vintages O through 20
DUMAUTOS	- Strike Dummy Variable
KEND*AY	- Desired Stock
NRUT	- Unemployment Rate
OMVUANR	- New Registrations
OPMVUAYEND	- Year-End Stock of Cars in Operation
PSCRAPAV	- Scrap-Metal Price
PUOLD	- Average Price of Old Cars
PUTOTNR	- New Car Price, Average, Weighted by Previous Year Sales
PUTGTIERL	- Previous Year Average New Car Price, Sales Weighted
RDI/FM	- Real Disposable Income Per Family
RDIP4/FM	- Permanent Family Income

A2-31

winder to an available in the factor of the first factor and the

TABLE A 2-3

SHARE OF NEW REGISTRATIONS EQUATIONS

I. Combined Subcompact and Compact New Registrations Share (SHRSCTNR) $2n \left(\frac{SHRSCTNR}{1 - SHRSCTNR}\right) = 2n \left(\frac{SHRSC*A}{1 - SHRSC*A}\right) + 0.0598815$ - 0.400553 [In (<u>(TMSCTK-SC)</u>) - In (<u>SHRSC*A</u>)] (16.61) \overline{R}^2 = 0.932 SEE = 0.0483 D.W. = 0.83 Period Fit: 1954-1974 II. Subcompact Share in Combined Subcompact and Compact New Registrations (SHRS/SCINR) $2n \left(\frac{SHRS/SCTNR}{1 - SHRS/SCTNR}\right) = 2n \left(\frac{SHRS/SC*A}{1 - SHRS/SC*A}\right) + 0.00275211$ (0.27) - 0.699549 [in (<u>(TMS/SCTK-SC)</u>) - in (<u>SHRS/SC*A</u>)] (21.41) - (TMS/SCTK-SC)) - in (<u>SHRS/SC*A</u>)] \overline{R}^2 = 0.958 SEE = 0.0453 D.W. = 1.39 Period of Fit: 1954-1974 III. Mid-Size Lar New Registration Share (SHRMDNR) $2n \left(\frac{SHRMDNR}{1-SHRMDNR}\right) = 2n \left(\frac{SHRM*A}{1-SHRM*A}\right) - 0.00198516$ (0.66) - 0.873077 [In ((TMMDK-SC)) - In (SHRM*A)] (82.94) - (TMMDK-SC)) - In (SHRM*A)] \overline{R}^2 = 0.997 SEE = 0.0101 D.W. = 1.26 Period of Fit: 1954-1974

Note: For definitions, see page A 2-33

TABLE A 2-3(Cont.)

IV. Full-Size Car New Registrations Share (SHRFDNR): Constrained Form
$2\pi \left(\frac{\text{SHRFDNR}}{1 - \text{SHRFDNR}}\right) = 2\pi \left(\frac{\text{SHRF*A}}{1 - \text{SHRF*A}}\right) - 0.0115806$ (3.06)
$- 0.826937 [2r. (\frac{(TMFDK-SC)}{1 - (TMFDK-SC)}) - 2r. (\frac{SHRF*A}{1 - SHRF*A})]$ (47.12)
R ² = 0.991 SEE = 0.0168 D.W. = 1.05 Period of Fit: 1954-1974
V. Luxury Car New Registrations Share (SHRLTNR)
$2n \left(\frac{SHRLTNR}{1 - SHRLTNR}\right) = 2n \left(\frac{SHRL*A}{1 - SHRL*A}\right) + 0.000264892$ (0.37)
$= 0.713064 [2n (\frac{(TMLTK-SC)}{1 - (TMLTK-SC)}) = 2n (\frac{SHRL*A}{1 - SHRL*A})]$ (105.00)
\overline{R}^2 = 0.998 SEE = 0.0021 D.W. = 1.33 Period of Fit: 1954-1974
Definitions:
SHRscNR = Share of New Registrations, Class sc, sc = S/SCT, SCT, MD, FD, LT.
SHR $s\sigma^*A$ = Desired Stock Share, Class $s\sigma$.
<pre>TMscK-SC = Share of Stock, Class so, after scraopage, shares adjusted to</pre>
TMSCK-SC = SHRSCK-SC/I SHRSCK-SC
where
<pre>SHRscK-SC = (OPMVUAccYEND(-1) - SCMVUAcc)/ (OFMVUAYEND(-1) - SCMVUA) = Previous class stock less this year's class scrappage relative to total previous stock less total current scrappage.</pre>

A2-33

DESIRED DOMESTIC SHARE BY SIZE CLASS EQUATIONS $\frac{1}{2}$

1. Domestic Share of Subcompacts

 $ln \left(\frac{SHRSD}{1-SHRSD}\right) = 31.2613 - 33.2971 (CPMSD/SF)$ (5.77) (6.00)+0.00567794 (NPMET)(2.87) (4.52)-D.343468 (DUMMTN) -0.302802 (DUMPAC)(4.29) (2.67) $<math>\bar{R}^2 = 0.668$ SEE = 0.1779 11. Domestic Share of Compacts $ln \left(\frac{SHRCD}{1-SHRCD}\right) = 36.4223 - 37.2060 (CMPCD/CF)$ (4.47) (4.01)+0.0254892 (EETD/F) +0.00515098 (NPMET)(0.45) (1.25)-0.773341 (DUMNEW) -0.745386 (DUMMTN)(2.53) (4.07)-1.28567 (DUMPAC)(4.67) $<math>\bar{R}^2 = 0.738$ SEE = 0.4140

1/ All equations are estimated over 47 states excluding Oklahoma, Alaska, Hawaii. and the District of Columbia

TABLE A 2-4 (Cont.)

III. Domestic Share of Luxury Cars

 $2n \left(\frac{SHRLD}{1-SHRLD}\right) = 10.8575 - 8.99660 (CPMLD/LF) (4.70) (3.69)$

+0.109161 (RETD/F) -0.378342 (DUMNEW) (2.57) (1.93) -0.234846 (DUMMTN) -0.613182 (DUMPAC) (1.74) (2.90)

 $\bar{R}^2 = 0.730$ SEE = 0.31095

IV. Elasticities for Domestic Share Equations

		SHRSD	SHRCD	SHRLD
۱.	Domestic Cost Per Mile to Foreign Cost Per Mile	-20.325	-1.266	-0.509
2.	Ratio of Total to Foreign Dealerships	0.146	0.003	0.020
3.	Percent of Population in CMSA's	0.205	0.011	

Definitions:

SHPSD	5	Domestic	Share	of	Subcompacts
SHRCD	Ξ	Domestic	Share	of	Compacts
SHRLD	=	Domestic	Share	cf	Luxury Cars

DOMESTIC SHARE EQUATIONS

I. Subcompacts + 2.10092 In (MODWTDSD/SF) + 0.912208 NPMET (13.88)(4.81355)+ 3.72615 In (NP20.29/FM) - 28.3427 In (NPRCOLL4+) (1.66) (6.71) $\bar{R}^2 = 0.949$ SEE = .380 D.W. = 2.408 Period: 1959-1974 Definitions: CPMSD/SF Cost Per Mile, Ratic, Subcompact Domestic to Foreign MODWTDSD/SF Sales-Weighted Models Index, Ratio, Subcompact Domestic to Foreign Percent of Population in SMSA's. NPMET NP20.29/FM Number of Persons Aged 20 to 29 Years Per Family NPRCOLL4+ Percent of Population Over 25 With 4 or More Years of College SHRSDNR Domestic Share of Subcompact New Registrations

TABLE A 2-5 (Cont.)

II. Compacts

+ 1.01743 2r. (DLRSWTDCD/CF) - 0.201210 NPMET (7.62) (2.33)- 4.48652 in (NPRCOLL4+) + 2.54281 in (NP20.29/FM) (1.79)(2.57)+ 10.9696 2n (PRPAC/R) (2.38) $\overline{R}^2 = 0.936$ SEE = .172 DW = 1.878Period: 1958-1974 Definitions: (See previous page) CPMCD/CF Cost Per Mile, Ratio, Compact Domestic to Foreign DLRSWTDCD/CF Sales-Wegithed Dealers Index, Ratio, Compact Domestic to Foreign PRPAC/R Percent of Population in Pacific Region SHRCDNR Domestic Share of Compact New Registrations

TABLE A 2-5 (Cont.)

III. Luxury ln (SHRLDNR/1-SHRLDNR) = - 52.2319 - 4.13072 ln (NPRCOLL4+) (2.74) (3.86) + 0.855848 In (DLRSWTDLD/LF) - 38.3084 In (NPRENC/R) (2.70)(2.99)+ $\sum_{i=0}^{3} a_{i}$ in $\left(\frac{\frac{FM}{RDI}}{\frac{RDI}{FM}}\right)_{-i}$ $a_0 = 3.45612; a_1 = 2.61378; a_2 = 1.75698; a_3 = 0.885720$ (2.41) (3.16) (1.98) (1.26) \overline{R}^2 = 0.868 SEE = .128 DW = 2.755 Period: 1958-1974 Definitions: (See previous pages) DLRSWTDLD/LF Sales-Weighted Dealers Index, Ratio, Luxury Domestic to Foreign NPRENC/R Fraction of Population in East North Central Region Real Disposable Income Per Family RDI/FM SHRLDNR Domestic Share of Luxury New Registrations

1

VEHICLE MILES TRAVELED

2n (VMT/FM) = 2n (W	TDMVINT/FM) + 0.418327 - 0.206013 Zn (PRGAS/AVMPGVINT/PC) (1.19) (3.07)
	+ 0.118999 2n (PER15+/100 - PER15+) (5.59)
	- 0.467538 In (RDIP4/FM) (3.42)
$\overline{R}^2 = 0.852$ SEE	≈ .014 DW = 1.662
Definitions:	
AVMPGVINT	Vintage-Weighted Average Fleet Miles Per Gallon
PER15+	Percentage of Families with Real Incomes of \$15,000 or More (1970\$)
PC	Consumer Price Index, Total, 1972 = 1.0
PRGAS	Retail Gasoline Price Per Gallon Including Taxes
RDI P4/FM	Permanent Income Per Family, Weighted (4, 3, 2, 1) Sum of Current and Lagged Real Disposable Family Income
VMT/FM	Vehicle Miles Traveled Per Family by Car
WTDMVINT/FM	Constant (1972) Mileage-Weighted Sum of Vehicle Miles by Vintage

RC-ESTIMATED CITY AND HIGHWAY MPG EQUATIONS

I. City Driving MPG

USacMPGC = Exp 7.24861 - .470C37 ln (USacCURB + 300.) - .191061 ln (USacDISP) - .0302763 (USacFAUTO) (665.0) (246.2) (137.5) (137.5) (28.8)

- + .114732 (USacF4CYL) + .0593937 (USacF6CYL) + .163961 DUM48.54 + .153868 DUM55.59 (78.1) (72.0) (72.0) (175.7) (189.7)
- + .124279 DUM60.65 + .120481 DUM66 + .0370749 DUM67.70 + .0280063 DUM71 + .00109548 DUM74 (163.1) (153.1) (124.1) (48.8) (29.5) (1.16)
- .00145807 PJM73 (1.54)

 $(1.0 + EFFC. / 100.0 + EFFC_{SC} / 100.0)$

where *ac* = SD, SF, CD, CF, MD, FD, LD, LF.

SEE = 0.0019R2 = 1.000

TABLE A 2-7(Cont.)

11. Highway Driving MPG

- $.329301 \ Ln$ (USacCURB + 300.0) - $.165243 \ Ln$ (USacDISP) - .043105 (USacAUTO) (57.0) (57.0) $US_{acMPGH} = Exp \ 6.6096$ (192.0)

+.0687791 (USacFOD) + .123554 (USccF4CYL) + .041025; (USccF6CYL) - .9210599 DUM48.57 (16.9) (16.9) (27.7)

* + .029719 DUM58.59 + .0717/87 DUM60.66 + .0487147 DUM67.70 + .0304012 DUM71 (14.7) (45.6) (45.6) (31.1) (13.1)

(1.0 + EFFH / 100.0 + EFFH30 / 100.0)

where $\varepsilon \sigma =$ SD, SF, CD, CF, MD, FP. LD, LF.

 $\tilde{R}^2 = 0.999$ SEE = 0.0057

TABLE A 2-7 (Cont.)

Definitions:

	96
30	lass
lass	ofc
s of c	class
car	for c
5 for	NPG
ving MPC	Driving
City Dri	Highway
11	11
ISacMPGC	ISeeMPGH

- US&@CURB = Curb Weight for cars of class e@
- $US_{\mathcal{BC}}DISP$ = Engine Displacement for cars of class \mathcal{BC}
- = Fraction of cars of class $s\sigma$ with automatic transmissions installed USacFAUT0
- $US_{6c}FOD$ = Fraction of cars of class so with overdrive units installed
- = Fractions of cars of class ac with 4 cyclinder engines installed USreF4CYL
- DUM $_{1,1,1}$ = Dummy equals 1 in year yy. 0 otherwise
- M_{max} = Number equals 1 from year yy to year zz, 0 otherwise

DUM yy.zz Size classes ac = SD, SF, CD, CF, MD, FD, LD, LF

- Multiplicative efficiency parameter (measured in %) to be used in the forecast period analysis to introduce across the board increases in %PGC due to technological improvements. þ. EFFC
- = Same as EFFC but applies to specific size class *as* where *as* = ST, CT, MD, FD, LT (Note: same improvement enforced for domestic and foreign members of a class) EFF 80
- EFFH = Same purpuse as EFFC but for highway MPG
- = Same as EFFM but applies to specific size class ss (see EFFC $_{ss}$ for size class definitions) EFFH 55

E.P.A. MILES PER GALLON EQUATIONS

Definitions: See End of Table

I. City

 $\begin{array}{r} \mathsf{EPAscMPGC} = 1.35252 + 1.3276 \ \mathsf{USscMPGC} - 1.9589 \ (sc = \mathsf{SF}, \mathsf{CF}, \mathsf{LF} \ \mathsf{only}) \\ (1.23) \ (14.91) \ (3.37) \end{array}$ $= 0.782185 \ (sc = \mathsf{FD} \ \mathsf{only}) \\ (1.14) \end{array}$

 R^2 = 0.872 SEE = 1.504 Estimated across 59 observations for 1975-76

II. Highway

EPAccMPGH = 0.147894 + 1.03287 USscMPGH + 1.59013 (sc = SF, SD only) (0.09) (13.04) (1.63) + 1.14248 (sc = CF, CD only) (1.45)

 $\bar{R}^2 = 0.876$ SEE = 2.207

III. Averages

 $\frac{5}{sc=1} \times \frac{N}{N} \frac{Sc}{N} / \frac{Sc}{SC} = 1 / \frac{Sc}{N} \frac{Sc}{N} = 1 / \frac{Sc}{N} \frac{Sc}{N} = 1$

For sc = SD, CD, MD, FD, LD; $\chi = C_{s}$ H.

EPATDMPG = 1 / [(VMTU/VMT)/EPATDMPGC + (1 - VMTU/VMT)/EPATDMPGH]
(The same expressions hold for EPATFMPGy, EPATFMPG)

TABLE A 2-8 (Cont.

III. Averages, Cont.

EFATTMPG = 1 / $\left[\left(\frac{N_{TD}}{N_{TT}}\right)$ / EPATDMPG + $\left(\frac{N_{TD}}{N_{TT}}\right)$ / EPATFMPG]

EPATDMPG-FW = 1 / (0.55 / EPATDMPGC + 0.45 / EPATDMPGH)

Definitions:

EPAscMPGC	City Per Gallon, Class sc, E.P.A. Estimate
EPAscMPGH	Highway Miles Per Gallon, Class 80, E.P.A. Estimate
MSscMPGC	City Miles Per Gallon, Class so, Consumer Reports- W.E.F.A. Estimate
USseMPGH	Highway Miles Per Gallon, Class εc , Consumer Reports-W.E.F.A. Estimate
Nec	New Registrations, Class sc.
80	■ TD = Total Domestic
80	≖ TF = Total Foreign
sc	= TT = Total All Classes
EPATDMPG-FW	Fixed-Weighted EPA Average MPG
VMTU	Vehicle Miles Travelled, Urban
VMT	Vehicle Miles Travelled

NEW CAR PRICE EQUATIONS

DOMESTIC: (Definitions: see end of table)

I. Average Domestic Base Purchase Price, Excluding Options, All Classes

ln (USTDPUBASEFW) = 3.58927 +0.978764 *ln* (PINPUTA) (13.3650) (16.2937)

+0.0152688 DUM58.63 +0.425313 ∆2n (PINPUTA) (4.74923) (1.90291)

 $\bar{R}^2 = 0.964$ SEE = 0.015174 1958-1974

II. Average Domestic Price for All Options, All Classes

In (USTDPOPTMFW) = 3.53466 + 0.757187 *in* (PINPUTA) (13.1164) (12.7053)

+0.132609 DUM 58.59 (9.14247)

 $\tilde{R}^2 = 0.919$ SEE = 0.017197 1958-1974

III. Domestic Base Purchase Price. Excluding Options, by Class
Subcompacts:
 USSDPUBASE-2 = (BP_S/SUM1) USTDPUBASEFW
Compacts:
 USCDPUBASE-2 = (BP_C/SUM1) USTDPUBASEFW
Midsize:
 USMDPUBASE-2 = (BP_M/SUM1) USTDPUBASEFW
Fullsize:
 USFDPUBASE-2 = (BP_F/SUM1) USTDPUBASEFW
Luxury:
 USLDPUBASE-2 = (BP_L/SUM1) USTDPUBASEFW
SUM1 = .092BP_S +.182BP_C +.236BP_M +.386BP_F +.104BP_L

TABLE A 2-9 (Cont.)

IV. Domestic Price for All Options, by Class Subcompacts: USSDPOPTM = (OP_S/SUM2) USTDPOPTMFW Compacts: USCDPOPTM = (OP_C/SUM2) USTDPOPTMFW Midsize: USMDPOPTM = (OP_M/SUM2) USTDPOPTMFW Fullsize: USFDPOPTM = (OP_F/SUM2) USTDPOPTMFW Luxury: USLDPOPTM = (OP_L/SUM2) USTDPOPTMFW SUM2 = .0920P_S +.1820P_C +.2360P_M +.3860P_F +.1040P_L

FOREIGN:

Foreign Base Purchase Price, Excluding Options, By Class Subcompacts: 2n (USSFPUBASE-2) = 4.47528 +0.694836 2n (IMPCOST) (21.0455) (15.347) -0.0596612 DUM58.65 (3.20585)

 $\bar{R}^2 = 0.969$ SEE = 0.02983 195E-1974

TABLE A 2-9 (Cont.)

Foreign Base Purchase Price, Excluding Options, By Class, ContinuedCompacts:2n (USCFPUBASE-2) = 4.04827 +0.870526 2n (IMPCOST)
(21.2241) (21.4359)-0.100992 DUM58.65 -0.0597245 DUM61
(5.92270) (2.08793) $\bar{R}^2 = 0.986$ SEE = 0.026756 1958-1974Luxury:2n (USLFPUBASE-2) = 3.77860 +1.05045 2n (IMPCOST)
(14.4073) (18.3237) $\bar{R}^2 = 0.955$ SEE = 0.048495 1958-1974

and the a part of the part of the

こうちょうない こうなななななな しんてい かなっ しいかいたい ななました いたまた ちょうちょう ちょうちょう ちょうちょう ちょうちょう ちょうちょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう

A2-47

TABLE A 2-9 (Cont.) VARIABLE DEFINITIONS, NEW CAR PRICES

- USSDP'BASE-2 Subcompact Domestic Base Price
- USCDPUBASE-2 Compact Domestic Base Price
- USMDPUBASE-2 Midsize Domestic Base Price
 - USEDPUBASE-2 Fullsize Domestic Base Price
 - USLDPUBASE-2 Luxury Domestic Base Price

USCDPOPTM

二日本のないない いいのにない 一日のあい うちんない

日本のないにはないたろうい

USTDPUBASEFW Fixed-Weight Average Domestic Base Price

- USSDPOPTM Subcompact Domestic Price of Maximum Installed Options
- USMDPOPTM Midsize Domestic Price of Maximum Installed Options

Compact Domestic Price of Maximum Installed Options

- USFDPOPTM Fullsize Domestic Price of Maximum Installed Options
- USLDPOPTM Luxury Domestic Price of Maximum Installed Options
- USTDPOPTMFW Fixed-Weight Average Price of Maximum Installed Options
 - USSFPUBASE-2 Subcompact Foreign Base Price
 - USCFPUBASE-2 Compact Foreign Base Price
 - USLFPUBASE-2 Luxury Foreign Base Price
- PINPUTA Fixed-Weight Index of Input Costs, Autos
- IMPCOST Weighted Average of Foreign Car Export Price Index
- DUM58-63 =4.0,1958; -3.0,1962; -2,1963.

=0.0 other years

DUM58.59 =1.0,1958 - 59. =0.0 other years

DUM58.65 =1.0, 1058 - 65. =0.0 other years

TABLE A 2-9 (Cont.)

BPS	Base Purchase Price Ratio, Subcompacts/Fixed-Weight Average
BPC	Base Purchase Price Ratio, Compacts/Fixed-Weight Average
BPM	Base Purchase Price Ratio, Mid-Size/Fixed-Weight Average
^{BP} F	Base Purchase Price Ratio, Fullsize/Fixed-Weight Average
OPS	Maximum Installed Options Price Ratio, Subcompacts/Fixed-Weight Average
OPC	Maximum Installed Options Price Ratio, Compacts/Fixed-Weight Average
OPM	Maximum Installed Options Price Ratio, Midsize/Fixed-Weight Average
0PF	Maximum Installed Options Price Ratio, Fullsize/Fixed-Weight Average
OPL	Maximum Installed Options Price Ratio, Luxury/Fixed-Weight Average

A2-49

And Paristing

EXPENDITURES FOR OPTIONS INSTALLED

I. Subcompacts

- $\begin{array}{r} 0.853868 \ \text{Zn} \ (\text{PER15+}) + 0.335403 \ \text{DUM58} \\ (2.32) & (2.83) \\ + 0.288755 \ \text{DUM59.61} + 2.92711 \ \text{Zn} \ (\text{RDIP4/FM}) \\ (3.42) & (2.40) \\ \hline \end{tabular} \\ \tilde{\end{tabular}}^2 = 0.950 \qquad & \text{S.E.E.} = 0.0823 \qquad & \text{D.W.} = 2.210 \\ \hline \end{tabular} \\ \mbox{Period: 1958-1974} \\ \hline \end{tabular}$

ODDSDDPT = (USSDPUOPT-2/USSDP()PTM 1.0 - (USSDPUOPT-2/USSDPOPTM))

Elasticities:

USTDPOPTMFW/PC	-3.94
RDIP4/FM	2.49
PER15+	-0.73

Note: For definitions, see page A 2-55.

TABLE A 2-10 (Cont.)

II. Compacts

+ 1.08065 DUM58 + 0.672234 DUM59 + 1.79413 Zn (RD1P4/FM) (8.63) (5.49) (3.41)

$\bar{R}^2 = 0.970$	S.E.E. = 0.1014	D.W. = 1.219
Period: 1958-1974		
ODDCDOPT = (USCDPUUOT-2/U 1.0 - (USCDPU	SCDFOPT1 OPT-2/USCDPOPTN)	

Elasticities:

USTDPOPTMFW/FC	-3.63
RDIP4/FM	1.37

Note: For definitions, see page A 2-55.

TABLE A 2-10 (Cont.)

 $\frac{111. \text{ Mid-Size}}{2n (\text{ODDMDOPT})} = 38.5568 - 5.96986 \text{ Zn} (\text{USTDPOPTMFW/PC}) \\ (6.84) (10.14) + 0.715813 \text{ DUM53} + 0.802432 \text{ DUM59} \\ (3.54) (4.06) + 1.68008 \text{ Zn} (\text{RDIP4/FM}) \\ (1.98) \text{ R}^2 = 0.951 \text{ S.E.E.} = 0.1636 \text{ D.W.} = 1.035 \text{ Period: } 1958-1974 \\ \text{JDDMDOPT} = (\frac{\text{USMDPUOPT-2/USMDPOPTM}}{1.0 - (\text{USMDPUOPT-2/USMDPOPTM})})$ $\frac{\text{Elasticities:}}{\text{USTDPOPTMFM/PC}} = -3.73 \text{ RDIP4/FM} + 1.05 \text{ Note:} 1.05 \text{ Midden in the second seco$

Note: For definitions, see page A 2-55.

1

TABLE 2-10 (Cont.)

IV. Full-Size + 1.03641 DUM58 + 0.90639 DUM59 (4.34) (3.88) + 2.00039 2n (RDIP4/FM) (2.00) $\bar{R}^2 = 0.930$ S.E.E. 0.1933 D.W. = 0.911 Period: 1958-1974 ODDFDOPT = (USFDPUOPT-2/USFDPOPTM _) 1.0 - (USFDPUOPT-2/USFDPOPTM) Elasticities: USTDPOPTMFW/PC -2.69 RDIP4/FM 0.92

Note: For definitions, see page A 2-55.

1

3

TABLE A 2-10 (Cont.)

 $\frac{V. \ Luxury}{2n} (\text{ODDLDOPT}) = 31.0341 - 4.86213 \ 2n} (\text{USTDPOPTNFW/PC}) \\ (8.64) (12.96) (12.$

Note: For definitions, see page A 2-55.

Definitions:

USscPUOPT-2	Cost	of	Optic	ons	Purct	ases,	Class	sc,
	8C =	SD	, CD,	MD,	FD,	LD		

- USscPOPTM Maximum Cost of Options, Class sc
- PC Consumer Price Index, All Items, 1972 = 1.0
- RDIP4/FM Real Disposable Income Per Family Unit
- PER15+ Percentage of Families with Real Incomes of \$15,000 or more

USTDPOPTMFW Fixed-Weighted Average Maximum Cost of Options

- DUM58 = 1.0, 1985 = 0.0, Otherwise
- DUM59 = 1.0, 1959 = 0.0, Otherwise
- DUM59.61 = 1.0, 1959-61 = 0.0, Otherwise

TABLE A 2-11

(Definitions: see end of Table)

I. Subcompacts In (USSFPUTRN) = -1.07380(4.88828) 2n (USSDPUTRN) = -1.08046 + 1.18913 Zn (PXRGT) (4.91860) (24.0193) -0.0578934 DUM65.67 -0.104719 DUM58 (3.82865)(3.42713) $\bar{R}^2 = 0.959$ SEE = 0.035960 1958-1974 II. Compacts ln (USCFPUTRN) = -3.71638 (16.9167) ln (USCDPUTRN) = -3.67384+ 1.81.214 Zn (PXRGT) (16.7230) (36., '08) -0.0439986 DUM65.67 -0.0776173 DUM58 (2.83753) (2.60438) $\bar{s}^2 = 0.980$ SEE = 0.035963 1958-1974 III. Mid-Size ln (USMDPUTRN) = -2.70790 + 1.61989 L: (PXRGT) (9.31492) (24.7648) -0.104544 DUM58 -0.0794565 DUM64.67 (2.93481) (3.94944) $\bar{R}^2 = 0.982$ SEE = 0.032823 1958-1974

TABLE A 2-11 (Cont.)

IV. Full-Size

「「ない」」 こうちょうちょう いちょう いちょうし ないない ちょうちょうちょう ちゅうちょうちょう ちょうしょう

- +0.0912733 DUM58.60 -0.0727867 DUM64.67 (3.35893) (3.13423)

$$\bar{R}^2 = 0.978$$
 SEE = 0.034977 1958-1974

V. Luxury

2n (USLFPUTRN) = -.0.349289(1.91375)2n (USLDPUTRN) = -0.303386(1.66225) + 1.14735 7n (PXRGT)(28.0423)

-0.0273104 DUM65.67 + 0.0656844 DUM59.61 (2.03501) (4.62970)

TABLE A 2-11 (Cont.)

VARIABLE DEFINITIONS, TRANSPORTATION CHARGES

USSDPUTRN	Subcompact, Domestic, Transportation Charges
USCDPUTRN	Compacts, Domestic, Transportation Charges
USMDPUTRN	Midsize, Domestic, Transportation Charges
USFDPUTRN	Fullsize, Domestic, Transportation Charges
USLDPUTRN	Luxury, Domestic, Transportation Charges
USSFPUTRN	Subcompacts, Foreign, Transportation Charges
USCFPUTRN	Compacts, Foreign, Transportation Charges
USLF PUTRN	Luxury, Foreign, Transportation Charges
PXRGT	Price Index of Transportation Sector, 1972-100.
DUM58	=1.0,1958 =0.0, other years
DUM58.60	=1.0, 1958-60 =0.0, other years
DUM59.61	=1.0, 1959-61 =0.0, other years
DUM64.67	=1.0, 1964.67 =0.0, other years
DUM65.67	=1.0, 1965-67

いいいでいたいでいない

いいいないないないないので

USED CAR MARKET EQUATIONS I. Number of Used Cars Purchased (PURMYUUA) $2n \left(\frac{PUKNVUA}{OPMVUAYEND}\right) = -1.82062 + 0.434827 \Delta 2n (OMVUANR) (55.02) (1.97)$ $\begin{array}{c} -0.553048 \ Zn \end{array} \left(\begin{array}{c} \underline{OMVUANR + OMVUANR(-1)} \\ \underline{OMVUANR(-2)} + \underline{OMVUANR(-3)} \end{array} \right)$ $\bar{R}^2 = 0.382$ Period of Fit: 1968-1974 SEE = 0.0723 DW = 2.89 II. Average Wholesale Price for Used Cars (PUSEDW) ln (PUSEDW) = -0.0180144 + 1.04679 ln (PUSEDR) (0.05) (18.34) $\bar{p}^2 = 0.960$ SEE = 0.0368 Period of Fit: 1960-1974 DW = 1.52III. Price of a One Year Old Subcompact Relative To A New Subcompact (PU/NST) $2\pi \left(\frac{PU/NST}{1 - PU/NST}\right) = 0.780082 + 0.559134 DUM63.65 -0.436451 DUM67.68 (3.46)$ -0.246608 DUM69.74 + 1.62353 Zr (PURMVUA (2.09) (4.91) + 2.38565 [AIR (PNEWST)] *DUM69.74 $R^2 = 0.800$ Period of Fit: 1958-1974 SEE = 0.1515 DW = 1.97

TABLE A 2-12

For definitions, see end of table.

ころにというないとうないない

「「「「「「「」」」

TABLE A 2-12 (Cont.)

IV. Price of a One Year Old Compact Relative To A New Compact (PU/NCT) $ln\left(\frac{PU/NCT}{1 - PU/NCT}\right)$ = 0.386129 -0.462438 DUM67.68 (3.89) (4.39) +0.928899 In (<u>PURMVUA</u>) (3.00) +3.51931 ∆2n (PNEWCT) (4.11) +0.365782 2r: (SHRCTNR (2.63)) (2.63) $\bar{R}^2 = 0.783$ SEE = 0.1361 DW = 2.08 Period of Fit: 1958-1974 V. Price of a One Year Mid-Size Relative To A New Mid-Size (PU/NMD) $ln\left(\frac{PU/NMD}{1 - PU/NMD}\right)$ = 0.559941 -0.212865 DUM61 -0.176421 DUM68 (8.41) (2.04) (1.57) +0.336964 Zn (PURMVUA (1.64) -1.23833 47n (PNEWMD) (1.66)+0.543911 in (<u>SHRMDNR</u>) (2.31) $\bar{R}^2 = 0.309$ SEE = 0.0984DW = 2.14Period of Fit: 1958-1974

For definitions, see end of table.

TABLE A 2-12 (Cont.)

VI. Price of a One Year Full-Size Relative To A New Full-size (PU/NFD) PU/NFD = 0.146425 -0.303990 DUM59 +0.370710 DUM64 (1.89) (2.84) (4.16) Ini 1 - PU/NFD +0.309486 DUM65.66 -0.221708 DUM70 +1.30431 In (PURMVUA) (4.15) (2.58) (5.96) (5.96) (5.96) (4.15) (2.58) (5.96) -3.41949 AZn (PNEWFD) (4.73) $\bar{R}^2 = 0.802$ Period of Fit: 1958-1974 SEE = 0.0813 DW = 2.14 VII. Price of a One Year Old Luxury Car Relative To A New Luxury Car (PU/NLT) $2n \left(\frac{PU/NLT}{1 - PU/NLT}\right) + 0.655544 - 0.204294 DUM67 + 0.212233 DUM72 (13.85) (2.98) (3.05)$ PURMVUA + 0.785318 Zn (- 2.07655 AZn (PNEWLT) (6.25)(3.59) $\bar{R}^2 = 0.786$ SEE = 0.0663 DW = 2.24 Period of Fit: 1957-1974

For definitions, see end of table.

「日本市のないないない」のないないないのできた。「日本」「「日本」」」

A2-61

ć

TABLE A 2-12 (Cont.)

VIII. Elasticities For One Year Old Price Relative Equations:

Size Class (sc)	(PURMVUA OMVUANR)	(PNEWsc)	(<u>SHRsenr</u>) SHRsenr_1
ŝt	0.33	0.48	***
СТ	0.29	1.10	0.11
MD	0.12	-0.44	0.19
FD	0.48	-1.26	
LT	0.21	-0.63	

Jefinitions:

OMVUANR	=	Number of New Registrations
OPMVUAYEND	Ξ	Year-End Stock of Cars in Operation
PNEWsc	u	New Car Purchase Price for Class sc
PU/Nsc	=	Ratio of One Year Old Price to New Price, Class <i>sc</i> , <i>sc</i> = ST, CT, MD, FD, LT
PURMVUA	ŧ	Number of Used Cars Purchased
PUSEDR	=	Age and Class-Weighted Average Used
PUSEDW	=	Automotive News Average Wholesale Used Car Price
SHRscNR	Ŧ	Share of New Registrations in for Class sc

TABLE A2-13

INCOME DISTRIBUTION EQUATION

z: (PER15+/100-PER15+) = -12.9970 + 1.15395 *Ln* (RDI/FM) + 1.25588 *Ln* (RDI/FM)(-1)+1.19145 *Ln* (RDI/FM)(-2) (26.7) (2.22) (2.22) (9.83) (9.83)

+ 0.960663 *ln* (RDI/FM)(-3)+0.563511 *ln* (RDI/FM)(-4) (3.96) (2.89) p² = 0.967 S.E.E. = 0.1124 D.W. C.749
Period: 1954-19.4

(Second-degree Almon Lag, constrained to zero at far end)

Definitions:

A2-63/A2-64

PER15+ = Percentage of Family Units with Real Disposable Incomes of \$15,000 or more

ROI/FM = Real Disposable Income Per Family Unit

APPENDIX A 3 EXOGENOUS ASSUMPTIONS

A 3.1 INTRODUCTION

This appendix contains all the exogenous inputs data used for the baseline forecasts, together with a brief indication of sources and methods used in their preparation. The data are presented in tables at the end of the appendix.

A 3.2 SOURCES AND METHODS

A 3.2.1 DEMOGRAPHIC INPUTS

Projections of the total resident population of the United States for all ages (NPR) and for selected age groups (NPR20.29, NPR16.74; were taken directly from U.S. Bureau of the Census, <u>Current Population</u> <u>Reports</u>, Series, P-25, No. 601, "Projections of the Population of the United States: 1975 to 2050", October 1975. This publication presents three series of projections which start with the estimated July 1, 1974 population and assume a slight reduction in future mortality and an annual net immigration of 400,000 per year. They differ only in their assumptions about future fertility. For purposes of this study, Series III was selected, which assumes an ultimate level of completed cohort fertility (average number of lifetime births per woman) of 1.7.

Since the population projections include Armed Forces overseas, a constant is subtracted for all years to obtain a projection of residential population. Estimates of Armed Forces overseas by age group for

A3-1

July 1, 1974 are given in Table K of the <u>CPR</u>. For series NPR and NPR16.74, the constant subtracted was 519,000 and for NPR20.29, the adjustment was 318,000.

The NPR20.29 series is a direct exogenous input to the model. The NPR16.74 estimates were used to project the total labor force beyond 1985 (see following section), and to project the number of licensed drivers, LDMV. The relationship employed was estimated:

 $ln \left(\frac{LDMV}{NPR16.74} / (1.0 - \frac{LDMV}{NPR16.74})\right) = -2.43303 + 0.0580339 TIME (-31.2) (46.4)$

 \bar{R}^2 = 0.989 S.E.E. 0.045081 D.W. = 0.509 Period: 1950-1974 (TIME = 50 in 1950)

The NPR estimates were used as a consistency check, and also to project the numbers of families (NCF) and unrelated individuals (NPRU) for 1991-2000.

The projections of the number of families and unrelated individuals (and of average family size) are based on U.S. Bureau of the Census, <u>Current Population Reports</u>, Series P-25, No. 607, "Projection of the Number of Households and Families: 1975-1990," August 1975. This publication presents three series of household and family projections, and the lowest series, C, was selected for forecast purposes. A constant adjustment factor of 3,000,000 persons in each year was added to the total of secondary individuals, since the number of secondary individuals under the age of 14 is not included in the Census Bureau Projections.

Average size of family (NCFMAVG) is based on the III-C projections,

A3-2

which combine the Series C projections of number of families and the series III population projections. The total coulation and family population projections are consistent in corect. They differ in coverage, since the one refers to resident population and NCF and NPRU are based on population projections which exclude members of the Armed Forces living in the United States in military barracks.

For NPRU estimates, 1991-2000, we continued the slow upward trend in the ratio NPRU/NPR, which the Census data indicate is rising at a declining rate. From a 1975 ratio of 0.0898 the Census projects an increase to 0.1025 by 1990, which we extended to 0.1045 in 1995 and 0.1055 by 2000.

For NCF, 1991-2000, the slow downward trend in NCFMAVG was similarly extended, from 3.39 in 1975 and 2.97 in 1990 to 2.91 in 1995 and 2.87 by 2000. Then we used the identity:

NCF = (NPR- NPRU) / $(\frac{3.45}{3.39} \pm \text{NCFMAVG})$ - where the 3.45/3.39 factor adjusts for the statistical discrepancy present in the Census data.

The family size inputs (FM5+/FM, FM3+4/FM) are projected on the basis of NCFMAVG. First we derived the proportion of families with 3 or more members (3+) from the estimated relationship:

 $R^2 = 0.788$ Period: 1960-74

S.E.E. = 0.0343

D.W. = 1.122

Then we derived the proportion of families with 5 or more members relative to N3+:

$$2n \left(\frac{N5+}{N3+} / (1.0 - \frac{N5+}{N3+})\right) = -5.05061 + 3.55659 \ in (NCFMAV3)
(6.71) (6.13)
- 3.57923 \Delta In (NCFMAVG)
(1.84)
 $\tilde{R}^2 = 0.788$ S.E.E. = 0.0343 D.W. = 1.122
Period: 1960-74$$

From the first relationship we obtain estimates of FM3+/NCF, and the second and the first together yield FM5+/NCF. Multiplying through by NCF/NCF+NPRU yields FM5+/FM and FM3+/FM, and subtraction of the former from the latter yields FM3+4/FM.

The percentage of the population living in metropolitan areas in the United States increased from 55.9 percent in 1950 to 62.7 percent in 1960, 68.4 percent in 1970, and 73.3 percent in 1974. The projections of NPMET assume that the combined effect of the creation of new SMSA's and migration out of SMSA's will result in approximately eighty percent of the population residing in metropolitan areas in 1990. A semi-log function was fitted:

NPMET = 73.310 + 2.343629 Ln (YEAR)

where YEAR = 0 in 1973, the constant = NPMET (1974), and the slope = (NPMET (1990) - NPMET (1974)) / Ln (Period) or (79.95 - 73.310) / Ln (17). A projected value of NPMET was then calculated for each year. Since the estimated NPMET showed virtually no change after 1990, it was left at 80%.

Four regional variables for population are projected: NPRNEW/R, NPRWSC/R, NPRMTN/R, and MPRPAC/R. The latest available regional projections are those published in <u>Current Population Reports</u>, Series P-25, No. 477 (March 1972), which give estimates for 1975, 1980, 1985, and 1990. The absolute numbers are based on population projections in <u>CPR</u>, P-25, No. 470, November 1971. These projections are now obsolete in the light of new projections in the October 1975 study. For this reason only proportions, by region, to total population were computed. The regional projections used were based on the E population series, which assumes an ultimate fertility rate of 2.11, and the Series I migration rate, which assumes continuation of 1960-1970 gross migration trends to 1990. At the time this study was completed, the 1970 census material had not been fully analyzed.

<u>CPR</u> P-20, No. 292, March 1976 "Population Profile of the United States: 1975" was used to establish the regional proportions for April 1, 1970 (Census), July 1, 1974 and July 1, 1975 (preliminary). It was apparent that the Series I-E projections for 1975 were already outdated when compared with the recent July 1, 1975 survey. The following procedures was therefore adopted.

The change in proportions 1975-1980 of the Series I-E projections was applied to the July 1, 1975 estimated proportions to give a revised projection for 1980, based on 1975 actuals. The change in proportions 1980-1985 was then applied to the revised 1980 numbers to estimate 1985. Finally, the change in proportions 1985-1990 of the Series I-E projections was then applied to the revised 1985 series to obtain 1990 estimates. In sum, the estimated shifts between regions 1975-1990 in the Series I-E

A3-5

projections were applied to actual (but preliminary) figures for regional proportions on July 1, 1975, rather than to the 1975 proportions originally projected. Projected proportions for the intermediate years were obtained by interpolation.

Three variables required projection for the travel to work variable, MTWNA. The growth rate of public transit passengers relative to employment (GRPUT/NER) is continued at its 1975 value. The growth-rate in transit passengers relative to passengers traveling to work by transit is assumed to continue the slow decline projected for 1971-75. Finally, non-auto, non-transit travel to work relative to employment is also assumed to continue to fall at the 1971-75 rate. $\frac{1}{}$

A 3.2.2. ECONOMIC INPUTS

The general economic forecasts have been discussed previously. Here we concentrate on the projections for the variables not explicitly forecast by the Wharton Annual Long-Term Econometric Model.

Personal income, taxes, transfers, employment and the unemployment rate are all taken directly from the forecast through 1985. After 1985 real growth was assumed to persist at 3% p.a. General inflation was assumed to run at 3.5% p.a. through 1990, then fail to 3.0%. The levels of employment and unemployment were projected consistent with the labor force projection, which assumes a slowdown in participation growth, the labor force being 67% of NPR16.74 for 1990 onwards.

The maximum passbook savings rate (the discount rate) is a straightforward assumption, while the installment credit rate is estimated from

^{1/} The net result of these assumptions and the numbers of family units, MTWNA/FM, shows a slow, steady decline over the period 1975-1993, from 0.1957 to 0.1715, then recovers to 0.1810 by 2000.

the equation presented in Appendix A2, which links it to Moody's Bond Rate (FRMCS) - this is projected to fall to 6.1% for 1986-91, and 6.0% thereafter.

The overall consumer price index (PC) was linked to the overall consumer expenditures price deflator (PDCE), the estimated relation-ship being:

2n (PC) = -0.0794606 + 1.0664 Zn (PDCE)(2.13) (127.7) $<math>\bar{R}^2 = 0.999$ S.E.E. = 0.0057 D.W. = 0.88 Period: 1960-75

The index for repair and maintenance (PCAR) was similarly linked to the same deflator:

 $\frac{2n}{R^2} = 0.996$ R² = 0.996
S.E.E. = 0.0173
D.W. = 0.707
Period: 1960-75

The index for parking (PCAP) was linked to the consumer expenditures on transportation services deflator (PDCEST):

 $\frac{2n}{(PCAP)} = -0.388362 + 1.16917 \ 2n \ (PDCEST) - 0.463602 \ \Delta \ 2n \ (PDCEST) \\ (3.37) \ (43.0) \ (2.65) \\ \hline R^2 = 0.995 \ S.E.E. = 0.0169 \ D.W. = 1.533 \\ \hline Period: 1960-75 \ D.W. = 1.533 \\ \hline R^2 = 0.995 \ R^2 = 0.95 \$

Also linked to the same deflator is the index for insurance (PCAI), with dummy variables introduced to account for the introduction of "no fault" insurance:

 $Zn (PCAI) = -2.08983 + 1.48283 Zn (PDCEST) + 0.390086 \Delta Zn (PDCEST)$ (5.80) (18.5) (0.90)+ 0.258437 DUMINS - 0.0631625 DUMINS72 - 0.0942298 DUMINS73(5.97) (1.23) (1.71) $<math>\overline{R}^2 = 0.983$ S.E.E. = 0.0387 D.W. = 0.932 Period: 1956-75

The consumer price index for motor oil (PCMO) is linked to PDCE:

Zn (PCMO) = -0.185291 + 1.08512 Zn (PDCE)(1.51) (39.5) $\bar{R}^2 = 0.990$ S.E.E. = 0.0188 D.W. = 1.141 Period: 1960-75

The consumer price index of tires and tubes has shown very slow upward movement over the past twenty-five years. Indeed, even in 1973, the tires and tube CPI declined by 4.6 percent, while the overall CPI rose by 6.2 percent. The increase between 1973 and 1974 was a relatively modest 7.1 percent, in view of the inflation in other industrial products. It has been assumed that prices in the period 1976-1979 will rise moderately as an effect of the recent wage settlement in the rubber industry. After that, retail tire prices should rise by 3.0 -3.5 percent a year to the end of the forecast period.

The overall weighted-average purchase tax-rate (TXRWTDAUTO) has been assumed to continue to increase at its 1971-75 rate of growth of 1.84% p.a. All other tax-rates incorporated here, and the automobile strike dummy, are of course set to zero for the baseline.

The domestic input price index is solved for given the solutions for each input price index (32 distinct indices), obtained from the Wharton Annual Long-Term Model, and the fixed input-output coefficient weights.

The foreign auto export price index was projected at 9% and 4% rates of growth for 1976-77 on the basis of <u>Automotive News</u> data and analysis. In line with current expectations concerning world trade in-

flation, we felt that foreign producers would probably be faced with somewhat higher rates of inflation than the domestic industry. Therefore, 7% inflation was assumed for 1978-79, 6% for 1980, 4.5% for 1981-90, and 4% thereafter.

The transportation services output price index is obtained directly from the Annual Model, and is then extended for 1986 onwards at an assumed rate of 2.5%. The steel scrap price is projected purely by assumption.

Finally, the retail price of gasoline is projected after distinguishing its two components: the pre-tax price and taxes. Since the taxes have not been on an ad valorem basis we have projected taxes as an addition, not a rate, using the long-term historical rate of increase of 2.5%. For the base price (PRGAS-TX), the projection is linked to the deflator for personal consumption expenditures on gasoline and oil (PDCENG), using the estimated equation:

2n (PRGAS - TX) = -7.32127 + 1.29065 in (PDCENG) (26.3) (20.8)

 $\begin{array}{rcl} & - & 0.564968 \ \mbox{Δ in$ (PDCENG)$} + & 0.145454 \ \mbox{$DUM74$} \\ & (2.71) \\ \hline R^2 &= & 0.995 \\ Period: & 1961-74 \\ \end{array}$

The PDCENG index is assumed to rise at a rate of 5% p.a. for 1986-91, and by 4% p.a. thereafter.

A 3.2.3 AUTO CHARACTERISTICS

The projections of physical characteristics by class of vehicle have

already been extensively discussed in Chapter 4. The only points that might be stressed are the dominant role of weight and displacement, and their interdependence. One should not be arbitrarily changed without adjusting the other. The further point to be made is that these projections relate not only to what might be technically feasible, but also to what consumers will be willing to purchase.

「「「ない」」というないです。

Included in the "characteristics" category we also project the urban driving fraction of total vehicle miles. Historically this has risen by a remarkably stable 1% p.a. since 1953, the only significant deviation being the unusually sharp increase in 1972. Since a decline in the rate of urbanization growth is anticipated, we have slowly trended the urban driving growth downwards throughout the period.

Finally, we have the exogenized parameter values, which are mostly extended using 1974 values. Included here are the used car price exponential decay rates and the domestic class price relatives.

TABLE A 3-1

TABLES OF EXOGENOUS INPUTS, BASELINE

TABLE	NAME	PAGE
2.01	Demographic Variables	A3-12
2.02	Economic Variables General Interest Rates Consumer Prices	A3-17
2.03	Economic Variables Auto Taxes	A3-22
2.04	Economic Variables Other Costs and Prices	A3-27
2.05	Auto Characteristics Curb Weight Engine Displacement	A3-32
2.06	Auto Characteristics Fraction With Automatic Transmission	A3-37
	Fraction With Overdrive	
2.07	Auto Characteristics Fraction With 4 Cylinders Fraction With 6 Cylinders	A3-42
2.08	Auto Characteristics Miscellaneous	A3-47
2.09	Auto Characteristics Domestic Price Ratios	A3-52
2.10	Fuel Consumption Efficiency Factors	A3-57

ころ、「ない、このないたいない」、「「「ない」」、「「ないない」、「いいないない」

to the state of the

ASSIJMPTIONS FOR EXOGENOUP VAHIABLES 1975 . 2000

and and and the second
ころのななないのでい

RARLES
-
-
>
DEMDGRAPHIC
0
-0
ω Fr

			10.5 2.01	DE MUGHAPHIC	VARIABLES			
1 1:1	1 1 E M		1975	1976	1977	1970	1979	198
11400468 0F F	AHILIES M.	1LL FA41L1ES	56,197 2,08	57,108	50.117	59,105	60,102 1.69	61, 06
31 almumber OF U 51	NREL. INDIVIDUALS	9 MJLL PERSI 36RUMTH1	19,105 2,79	19,512	19,886 1,92	20,270	20,652 1,88	21,05 1,8
61 71FKACTINN OF A1	FAMILIES WITH 3	ар с РЕРЗ, 1 Хбийитні	0,304 +0,39	0,56 0,56	0, 306 0,07	0.306-0.01	0,307 0,46	0,30
91 016 MACTION OF 11	FAMILIES WITH 5	 PERSONS TGHOWTHI 	0,156 -4,39	0,147 -4,53	0,143 -4,05	0.137 -4.19	0.132	ŋ,12 -3,8
21 31+ HACTINN OF	PDP. 20 10 29 YI	EARS DLP I ZGROHTHI	0.476 1.07	0 • 484 1 • 7 9	0,461 -0,71	0,481 0,07	0, 471 0,01	0°0 07°0
51 61PERCENT DF	PAP, IN METROPOL	JTAN AREAS I TGROWTHI	74,93 2,21	75.88	76,56 0,89	77.08 0.68	77.51 0.55	77.8 0.4
PILINIE HACTION OF	PDP . I N NEM ENG	LAND REGIUN I ZGRUHTHI	10°0-720	0,057 0,02	0°057 0.02	0 057 0 02	0,057 0,02	0°0 0°0
PII PIFRACTION OF	PCIP. IN L.N. CE	אדפאנ אבקותעו גהאמשועו גהאמשועו	0,192 -0,82	0 • 1 9 2 - 0 • 0 5	0,192 +0,05	0 192 -0,05	0,192 -0,05	0 1 0
SIFHACTION OF	PCP 11 MOUNTAL	N REGINU 1 26P0M1H1	0 ° 0 4 5 1 - 33	0 ¢ 0 4 5 0 ¢ 3 5	0,046 0,33	0 ° 0 4 6 0 • 3 3	0 + 0 4 6 0 + 3 3 .	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
271 2016 RACTION UF	PUP. IN PACIFIC	1 REGION 1 16ROWTH1	0,132 0,65	0 • 1 3 3 0 • 6 6	0 • 1 3 4 0 • 6 6	0,135 0,66	0 • 1 3 6 0 • 6 6	0,13
SAI SIIFHACTION SF SZI	PAP. 1M W.9. CE	NTRAL RLGINNI Sgrowthi	0,098 0,74	0,098 0,01	0,098 0,01	0,048 0,01	0,073 0,01	6 0 0
131 Galghinath Rate 551	, PASSENGERS / FI	MPLOYMENT 2600/11/1	1.017	1 0 1 7 0 0 0	1,017 0,0	1.017 0.0	1:017	1.01
161 57164Пити нате 341	, PASS / PUNLIC	TRANS M.T.W.I SGROWTHI	0°40 1040	0°0 0°0	0°040	0°0°0 0°0	0,994	0°0°0
191 1916HQMTNE RATE 211	• ПТИЕН М _• Т.W. /	FMPLOYMENT	0,943 -0,02	0°0343	0 * 0 0 * 0	0.0 0.0	0°0 100	0 0 0 0
121 131NUMBER ME L	ICENSED DRIVERS	MJLL PE451 141001141	128,44 2,40	131,46 2,35	134,57	137,50 2,18	140,34	143.0

ASSUMPTIONS FOR EXOGEMOUS VARIABLES 1975 + 2000

1

restruction above as a har " radiance as a generation

and the second
TARLE 2.01 DEMOGRAPHIC VARIABLES

1.178	115	Σ	1981	1982	1983	1984	1985	961
1 FNUMER D	F F A41L1FS	MILL FAMILIES SGROWTHI	62,077 1,63	63,093 1,64	64,071 1,55	65,012 1,47	65,040 1,36	66,75 1,3
a MUMBER D	F UNREL, TWDIVI	DUALS MILL PERSI ZGRUNTHI	21,406	21,747	22,085	22,412	22,737	23,01 1,2
61 71FHACTION 81	CIF FAMILIES WI	TH 3 OR 4 PERS. 1 2GRUNTH	9,306 0,39	0,30f -0,12	0, 305 -0,17	0,307 0,37	0 • 304 • 0 • 78	0,30 0,3
91 101FRACTSON 111	OF FAMILIES W	T') 5+ PERSONS 1 26ROWTH	0,122	0.117 -3.40	0,113 •3,48	n.110 •2.99	0,107	0,10 •3,0
121 13158ACT10N 141	0F POP, 20 10	29 YEARS NLD 1 26RUMTH	0.460-0.17	0.478 -0,58	0.473 -0.91	0,468	0,460 • 5,69	0,45 -2,2
151 161PFRCE41 171	OF POP _e IN METH	UPDLITAN AREAS	78.16 0.40	78,46 0,35	78,71 0,31	78,93 0,28	79.83	79,3 0,2
19158ACT10N 201	UF POP. IN NEW	ENGLAND REGION I ZGROWTHI	0,057 0,03	0,057 0,03	0 + 0 5 7 0 + 0 3	0.057 0.03	0 + 0 5 7 0 + 0 3	0°0 20°0
211 221FHACTION 231	0F PNP, 14 E,4	I. CENTPAL REGIONI 2GRUWIHI	0,192	0.192 •0.03	0,192 -0,03	0,192 -0,03	C.191 -0,03	0°14
241 254144671111N 261	UP PDP. IN NOU	NTATH REGION 4 ZGHUNTH	0 • 0 4 5 0 • 2 8	0 0 4 6 0 € 8	0 ° 0 4 6 0 ° 2 8	0 ° 0 4 7 0 • 2 8	0 • 0 4 1 0 • 2 8	0°C4 0°2
211 2415RACT104 291	UF POP. IN PAC	TFIC REGION 1 26ROWTH	0.138 0.57	0.150 0.57	0,139 0,57	0,140 0,57	0,141	0 • 1 ¤ 0 • 1
50: 416524CT104 521	ΠF P∩P. IN ₩.S	5. CENTHAL REGION XGROWTHI	0°048 -0°00	00°04 00°04	00°0+ 00°0+	00°0- 00°0-	00°0+ 00°0+	0.04
551 5416809414 8 551	ATE, PASSFUCERS	I FMPLOYMENT I XGRUMTHI	1.017	1,017	1,017 0,0	4 • 01 7 0 • 0	1.017 0.0	10.0
361 371680#14 8 381	ATE. PASS / PUR	1LJC TRANS M. T. M. I 2640WTH1 2640WTH1	0°040 0°0	0°0 0°0	0°0 100	0°040	0°0 536°0	0°0 66°0
115 anigenwin R cij	איזיא יזיאי זיא	W . Z EMPLOYAFNI I ZGHONIHI	0°43 0°0	0,943	0 • 0 0 • 0	0,743	0.043	0°40 0°0
421 43141146.P. () 441	F IICENSED PRIV	HALMORDZ ISBJA TTLA SES/	145.57	147.85	147,95 1,42	151,93 1,32	153,87	155,9

ASSUMPTIONS FOR EXUGENDUS VARIABLES 1975 - 2000

R

Rept. Marsher Bill - Pro

The second second

the life which which we want

₽.
-
-
£Y
-
2
_
U.
-
Ξ.
2
-
22
5
Ξ.
¥.
÷.
5.0
C
-
0
2
1
-
7
-

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			TAHLE Z.01	DT MOGRAPHIC	VARIABLES			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1115	1 T L A	1987	1968	1989	0653	1461	266:
Пинияся 0. имеЕ., Пипутин.S П. 1. 10 23,256 23,556 23,828 24,068 24,342<	11 VUVBEN DF	FAMILIES MILL FAMILIESI SGUNUTHI	67,581 1,24	68,382 61,19	69,185 1,17	69,947 1,10	70,611 0,95	71,179
Nite CTIDY OF FANILIES WITH 3 OR 4 PERS, SCHORTH 0,105 0,103 0,	31 uiniimer Of 51	UNPEL, IMDIVIDUALS MILL PERSI 2GRUMTHI	23,288 1,10	23,550 1,10	23,824 1,15	24,088	24,342	24,561 0,90
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	AI 7155ACTION (1 A1	IF FAN: LLIES WITH 3 OR 4 PEPS, 1 ZGROWTH	0,305 •0,18	0,304 =0,21	0, 303 •0,24	0 8 3 0 5 0 8 3 9	0,302-0,61	0 8 0 30
1 0.437 0.436 0.437 0.436 <th0.436< th=""> 0.436 0.4</th0.436<>	91 Inif#ACTION C	F FAMILIES WITH 5+ PERSONS 1 26FONTH	0,101 +2,49	0,098 -2,52	3,096 *2,56	0,094 -1,95	0,092 -1,98	0°040 -2°07
No По	21 31FRACTINN U 141	IF PUP. ZO TH 29 YEARS OLD 1 25HUATH1	0,437 -2,76	0, 424 =2,94	-2,81 -2,81	0,402	0, 392 •2:37	0,381 -2,81
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	51 64PERCENT OF 71	PDP. IN WETHOPHLITAN AREAS 1 SCRUWIHI	79,49 0,22	79.66 0.20	79.61	79.95 0.18	80°0 0°0	80°0(90°0
1 0,191 0,191 0,191 0,191 0,191 0,191 0,191 0,191 0,191 0,191 0,191 0,191 0,191 0,191 0,191 0,191 0,191 0,191 0,191 0,01 <th0,01< th=""> 0,01 <th0,01< <="" td=""><td>BI 918 FACTINN (1 91</td><td>IF POP₆ IN NEW ENGLAND REGION I XGHOWINI</td><td>0°057 0.03</td><td>0,057 0,03</td><td>0 • 057 0 • 03</td><td>0,057 0,03</td><td>0,057 0,0</td><td>0°0 0°0</td></th0,01<></th0,01<>	BI 918 FACTINN (1 91	IF POP ₆ IN NEW ENGLAND REGION I XGHOWINI	0°057 0.03	0,057 0,03	0 • 057 0 • 03	0,057 0,03	0,057 0,0	0°0 0°0
Si FAACTIAN OF POP. IN MAINTAIN REATON Si FAACTIAN OF POP. IN MAINTAIN REATON Si FAACTIAN OF POP. IN MAINTAIN REATON Si FAACTIAN OF POP. IN MAINTAIN REATON O, 23 O, 23 O, 23 O, 23 O, 24 O,	11 21594C1104 C	H PAP, IN F. ⁴ , C ENTRAL REGIONI XGROWTH	0°191 -0,03	0,191 -0,03	0,191 +0,03	0°191 •0•03	0,191 -0,03	0,191-0
$ \begin{array}{ccccccc} & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0$	UL SIFHACTTON D 61	I POP. IN MOUNTAIN REGION I 26200111	0 ° 0 4 7 0 ° 2 3	0°047	0,047 0,23	0,047 0,23	0 • 0 # 7 0 • 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 Радити 0.098 0.098 0.098 0.096 0.066 0.096 0.096 0.066	TI MIFRACTION C	IF POP, IN UNCIFIC REGION T	0 • 1 4 2 0 • 4 9	0,143 0,49	0,144 0,29	0.144 0.49	0,149 5,0	0,140 0,0
11 1,017 0,0	101 1115 HACTION C	H POP. IN W.S. CENTRAL REGION 3640001H	0,098 •0,01	0 0 0 0 3 0 3 0 8 0 0	0°00 80°0 80°0	0.098 -0.01	0°0 0°0	0°0 0°0
0 0	131 14164041H 4A1	14 PASSFAGERS / EMPLOYATIN	1,017 0,0	1.017	1.017	1.017	1 + 017	1.017
101 101640-114 маТғ. Пімен мат.«, / Емр.П.У.Телт 1 0,943 0,943 0,943 0,943 0,943 0,9 111 2.11 111 2.11 111 111 0,91 111 141,21 157,95 157,96 159,71 161,21 162,62 163,95 165, 141 0,412 16,62 163,95 165,141 1,32 1,11 0,94 0,87 0,82 0,	55 57 640474 4A1 14	+, PASS / PURLIC TRANS M.T.W.I XGRUNTHI	0°444 0°0	0°0 0°0	0°0 0°0	0°0 7°44	0 ° 0 0 ° 0	0°0 766°0
21 :11/10/44EM (JF LICE/VSED) [141/VEAS MILL PEHSI 157,96 159,71 161,21 162,62 163,95 165, 141 0,94 0,87 0,82 0,	191 141649416 RAT 11	F. ПТНЕН М,Т.Ч. / ЕМР.ПУЧЕИ I 2640.47Hj	0 * 9 4 3 0 * C	0°0 10°0	0,943	0,943 0,0	0,743 0,0	0.0
	121 1317048EN OF 141	LICENSED DHIVERS MILL PERSI 2GRUMH	157,96	11.11	161.21	162,62 0,87	163,95 0,82	165,16

ASSUMPTIONS FUR EXUGENOUS VARIARLES 1775 - 2000

all and all and a second and a se

112 E M	1993	1994	5661	9561	1001	1001
TINITITIER IN FAMILIES HILL FAMILIES	71,728	72,258	72,176	73.276	73,767	74,243 0.65
31 4 INUMARER OF INNARL, INDIVIDUALS MILL PERSI 51 x500.0114	24,772 0,86	24,977 0,83	25,151	25,318	25, 453 0, 53	25,581 0,51
bi 71FWACTION OF FAMILIES WITH 3 OR 4 PERS, 1 Ni 2GHOMTHI	0 • 3 0 3 • (1 • 1 7	0,102	0,302 •0,15	0,301 *0,16	0,301 +0,13	0°300 -0°10
01 DIFRACTION OF FAMILIES WITH 5+ PERSONS 1 11 XGROWTHI	0,087 •1,36	0,088 +1,37	3,006 *1,36	0,085 •1,36	0,084	0,083 *1,36
21 31FRACTION OF POP. 20 TO 29 YEARS DLD 1 41 XGROWTHI	0 8 6 9 - 3 6 2 0	0,357 #3,22	0,347 +2,90	0,338	0,330 +2,29	0,325 -1,62
11 61FERCENT OF POP, JN METHOPOLITAN AREAS 1 71	80°0	00°0 00°0	A0.00 0.0	0°0 0°0	80°00 0°0	80°0 0°0
RI 91 MACTINN OF POP, IN NEW ENGLAND REGION I 2601 - 26404741	0,057 0,0	0°057 0°0	0,057 0,0	0 • 0 5 7 0 • 0	0,057	0°0 0°0
11 2216#ACTION OF PEP, IN E.N. CENTRAL REGIONI 211 26800414	0,191	0,191 -0,03	0,191	0.191 -0.03	0,191 •0,03	0.191
DULI	0°0	0,047 0,0	0°047	0 • 0 4 7 0 • 0	0,047 0,0	0°0 0°0
ידן אסט אין איז	0 • 1 4 4 0 • 0	0 • 1 4 4 7 • 0	0,144	0 • 1 4 4 0 • 0	0,144	0,144
501 511 FRACTION OF POP. IN N.S. CENTRAL REGION 521 26004111	0°0 1080 0	0°048 0°0	0°0 0°0	0°0 0°0	0°0 9°0	0°0 0°0
141 Suigrijatin hatte passengens / Emplitanent i Ssi	1.017	1,017 0,0	1,017 0,0	1,017 0,0	1.017	1,017
iai 17164m-114 Ratf, Pass / Piiille trans M.T.M.I 181	0°994 0,0	0°0 865°0	0 + 0 0 + 0	0°0 9°0	0°0 0°0	0°0 0^0
sul 10.000 Marte, Afher Maran, / Employment 11. zgrument	0,743 0,0	0,943 0,0	0 * 0 0 * 0	6 5 4 3 0 • 0	0 + 7 # 3 0 + 0	0 ° 0 ° 0
1) 1.11ч⊔чн€Р ЛF LICENSED RRIVERS MILL PEMSI Σ620∞701	166,33	167.53	168.77 0.79	:7C.07 0.78	54.111	172.77

ASSUMPTIONS FOR EXOCENJUS VANTAULES 1975 . 2000

J

of all here i

TARLE 7,01 DEMUGRAPHIC VARIABLES

- -	-	
10496 P () F F AMIL [5 MILL F AMIL [5 M L L E AMIL] 5 M L	74,705 0.62	74 903
INTER OF UNREL, TODIVINUALS MILL PERSI SGMOTHU XGMOTHU	25,70A 0,49	25,803
RACTION OF FANILIES WITH 3 OF 9 PERS, I 2640/111	0.300-0.15	0 • 301 0 • 49
HACTION OF FAMILLES WITH SO PERSING I 2007/14	0,082 -1,37	0 • 0 8 1 - 0 • 7 5
HACTION OF POP. 20 YO 29 YEARS OLD I 20PMTH	0,320 -1,35	0.317 -1.03
JENCENT UF PUP, IN "ETROPOLITAN AREAS F SEARMENT	60°00 0°0	80°00 0°0
CHACTION OF POP. IN NEW ENGLAND NECTON I 26HUATHI	0°027	0°J 150°D
FRACTION OF POP. IN L.P. CENTRAL REGIONI 2040/0714	0.141 -0.03	0°141 -0°03
FRACTION OF POP. IN MOUNTAIN RECTON 1 26.8004101	0,047 0,0	0.047 0.0
FRACTION OF POP. IN PACIFIC REGION F 2040/mini	0,144	0.144
RACTION OF POP. TH M.S. LENTRAL REGIONS SCHUMEN	0°038	0 • 0 7 A 0 • 0
GUNWTH HATE, PASSENGERS / EMPLOYIENT Xunum	1 . n 1 7 0 . 0	1,017
GRAWTH RATE. PASS / PUBLIC TRANS M.1."". Scrimtin Scrimtin	0°0 0°0	ಕ್ಷ ಕ್ಷ ಕ್ಷ ಕ್ಷ ಕ್ಷ ಕ್ಷ ಕ್ಷ ಕ್ಷ ಕ್ಷ ಕ್ಷ
GANATM WATE, DTHFW M ₅ T _o m, / Employment 1 Turnen 2GRUATM	0°0 0°0	0.943
UNIVIPE OF LICENSED DELVERS MILL PERSI 2600/141	174.15 0.79	175.47

A3-16

ASSUMPTIONS FOR EXUGENOUS VARIARLES 1975 - 2000

TABLE 2.02 ECHIQMIC VARIABLES

	5	5141	9161	1141	1410	5/51	1461
161 NERAL 1 1 VERSNIAL 1NCUME	BILL CURP SI XGRUWIHI	1249,70 A,23	1376,10	1520,00 10,46	1686.70	1826,30 5.28	1975,93 8,19
I PERSUMAL INCOME TAXES	RILL CURR SI XGROMIMI	168,80 -1,38	194,50	222,80	261.30 17.28	239.10 10.64	325,20
I TRANSFER PAYMENTS 1	1 1111 CURR 51 26R0#1H1	175,20 24,82	191.10 9.08	207,00 8,32	225,30 8,84	239,90 6,48	257,40 7,29
1 F4PLQY4ENT }	THUU PERSUNSI I HIUU PERSUNSI XGRUWIHI	84783. -1.34	37448. 3.14	56°2 50058°	93468. 3.82	95586, 2,27	97153. 1.64
I UNE WPLOYMENT RATE	I HLMU83%	R.50 51,79	7.70-9.41	7,20 -6,49	6,10 •15,28	5,30	5,20 -1,89
l Inierest hates	ana ana .						
I WATTHIN PASSHORN SAVI'	163 PERCENTI 2680/174	5,50 0,0	0°0 2°20	5 * 5 0	5,50 0,0	5°50 0°0	5,50 0,0
CONSIMER INSTALL. CRH NEW AUTIJS	DIT PATE. PERCENTI ZGROWIHI	12.19 3.30	11.82 -3.14	11.36-5.92	11.03 •2,92	10.83 -1,80	10,76 •0,61
ICTIVATIVE PRICE INDICES							
, P. 31 A.,	1967371001 2640w1H1	161.2	169.4 5.10	179,4 5,86	105,8	200.5 6.19	211.3
I AUTO REPARS	1967=1001 26ADM:111	174.6 12.63	193.5 9,58	207,1 7,05	221.9	237.8	255°3 7°36
I AUTO TUSURAMCE PREMIN	1967=1001 1967=1001 26RUMIMI	1 45 , 9 5 , 65	161.6 10,75	179.9	196,5 9,15	219.5	238°6
110ES	1401=1401 1401=1001 1	126.3	132.0 4.51	139,9	146.7 5.00	153.5	158,9
ן ייטזמא חוו ו	1967=1001 264047H1	155,3	163.7 5.42	173.5	182,8	1920 5010	202 0 5 40
I PARVING FILS	1967=1001 268061141	172.1 1.31	109.1 9.85	205,7	222,1 8,01	240,6 8,30	359.5 7,86

ASSUMPTIONS FOR EXOCENTIS VANJABLES 1975 . 2000

ľ

TABLE 2.02 ECONOMIC VANIABLES

¥.	1 1 1		1961	1962	1983	1989	1985	201
10	ENERALI PERSONAL INCOME	0111 20808181	2144 50	2511,40	2485,70	2671.00	2068,50	3054,3
	PERSONAL INCOME TAXES	RILL CUPR ST 2640m1H1	365,10 12,27	406.80 11.42	446,70 9,81	489,20 9,51	530.00 8.34	505,1 6,6
	THANSFER PAYNENTS	I BTLL CURR SI 2640MTHI	274.63 6.6R	295.00	318.30 7.90	302,00	571,20 0,41	395°0 84
===	EAPLUTNENT	THOU PERSONAL XGROATHI	98807. 1.70	100118°	101273.	102530	103737. 1.18	105294
	nufmetgyafut RATE	20RUWTH1	4,90 +5,77	000000	5,10 4,08	5,10 0,0	5,20 1,96	5,1 •1,9
	NTEPEST PATESE							
	MAY MUM PASSHOOK SAVINGS	รักเหยือวิ. เมษาวิยาส เมษาวิยาส	5 • 5 0 0 • 0	5°20	5 ° 5 0	5°50 0°0	5° 20 5° 20	5.5
	COMSUMER INSTALL, CREDIT HEM AUTOS	RATE. PERCENTI 2GRUMTHI	10,70 -0,62	10,56 -1,24	10, a 3 - 1 4 2 5	10°25	10,10 -1,30	- 4 - 4 - 3
	NNSUMER PRICE INDICESI							
	101AL	1967±1001 2600/1701	220.6 4,39	230.2	241,0 4,65	251,0 4,17	261,2	271.
	ANTA REPATAS	196731001 2640W1H1	211 3 6,20	286°3 5°55	302.7	319.6 5.61	330,3 5,21	355° 4,9
	ANTO TUSUHANCE PREMIUNS	1967=1001 268UWTH 1	254 1 6 4 4 9	271.6 6.8A	290°1	307.0 5.62	32400 5452	340.
	1 1 P 1	1967=1601 2680WTH1	1 69 4 3 4 4 6	170.2	176.2 3.55	182,3 3,46	199.7	194 3,0
= = =	M01018 011	1967=1001 268081H1	214.1 0.46	223.7 4,48	230°3 0•73	294 2 8 2 2	254,3 8,10	264 3.43
372	PAHAING FEFS	1967=1001 \$4,PUMTH1	275 6 6 20	290 6 5 445	306.5 5,46	321.1 2.97	136.1 8.49	350°

ASSUMPTIONS FOR EXUGENCINS VARIABLES 1975 . 2000

•

If T <tht< th=""> T T T</tht<>				1 4 1 1 1 1 C 4 C	ישואטאור י	C 2 TOP MO/			
Interest Intl. Cline J 125,5 G 145,5 G 141,5 G 141,6 G	۳ ۳	M 3 8 8	1	1991	1958	1989	1990	1661	1992
FFRBUNAL INCOMF TATES BILL CURN S D02,00 D02,00 <thd02,00< th=""></thd02,00<>		FNERALI PERSONAL INCOME	ATLL CURR 51 TCHOWTHI	3253,50 6,50	3965,00 6,50	3690,20 6,50	3930,10 01,0598	6165,90 6,019	8415.80 6.00
Памустия ПLL Слая и склотии 420,20 0,36 437,10 0,36 55,20 1,39 517,10 0,40 56,20 0,52 517,10 0,52 56,20 0,52 517,10 0,52 56,30 56,10 56,10 56,10 56,10 56,10 56,10 56,10 56,10 56,10 56,10 51,11 56,50 51,11 56,50 56,10 56,10 56,10 56,10 56,10 56,10 56,10 56,10 56,10 56,10 56,10 56,10 56,10 56,10 56,10 56,10 56,10 56,10 56,15 111,072 1111,022 111,072 111,072		PERSIJNAL INCOME TAXES	BILL CURR SI	602 80 6 60	692,10 6,55	684 50 6 6 6 0	724.70	774.20 6.10	821,40 6,10
Fилиции Тили реясний Тили реясний Тили реясний Тили реясний Тили реясний Тили разований		TRANSFER PAYNENTS	BILL CHRR SI	420.20 6.38	407.10 6.00	a75.70 6.40	506,20 6,41	537,10	569 . 80 6.03
Ult инсцолицит чать 4,00<	= = =	1N 3HAU Taw J	THOU PERSONSI 26ROWTHI	106702, 1,39	105164. 1.59	104365. \$ • 13	1105960 102	119072.	111660 0.50
Initial ST Matesi Second H Second H </td <td></td> <td>infruployment gate</td> <td>26RDW1H</td> <td>4°90 €9°5</td> <td>4 ° 6 0 ● 6 • 1 ≥ 2</td> <td>4,30 46,52</td> <td>а. 00 86.98</td> <td>00°0</td> <td>3,99 2,5</td>		infruployment gate	26RDW1H	4°90 €9°5	4 ° 6 0 ● 6 • 1 ≥ 2	4,30 46,52	а. 00 86.98	00°0	3,99 2,5
чаятични развился ревсемт 5,50 <th< td=""><td></td><td>NTEREST NATESI</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		NTEREST NATESI							
Ссичения INSTALL, СБЕЛІТ РАТЕ, NEK, AUTINS ССПИКНИКЯ INSTALL, СБЕЛІТ РАТЕ, NEK, AUTINS ССПИКНИКЯ PRICE INDICESI CUNSHIMER PRICE INDICESI TOTAL TOTAL TOTAL 10672100 1007 1010 REPAINS AUTO AUTO AUTO AUTO REPAINS AUTO AUTO AUTO AUTO AUTO AUTO AUTO AUTO AUTO AUTO AUTO AUTO AUTO AUTO AUTO AUTO AUTO AUTO AUTO		MARTHUM PASSHOOK SAVINGS	PERCENTI 2GROWTH	5°20	5,50 0,0	5,50 0,0	5°50 0°0	5°50 0°0	0°0
ГПЛАL ПОЛУБИМЕЯ РАТСЕ ТМИТСЕS1 ГПТАL 291,6 302,6 302,6 313,7 323,6 334,2 ССИЛИТИН 2,171 2,173 3,774 3,516 3,520 АUTO REPAINS 1957=100 3,69,7 3,77,1 5,773 5,77 4,00 АUTO REPAINS 1957=100 3,59,7 3,77,3 3,96,9 417,9 43,1 401,0 АUTO INSUPANCE PARMIUNS 1957=100 3,58,4 377,3 3,96,9 417,9 42,0 AUTO REPAINS 1957=100 3,58,4 377,3 3,96,9 417,9 43,1 4,01,0 COUNTH 2,94 3,5,7 4,57 4,00 3,5,7 4,00 3,5,7 4,00 TIAFS 2,04 2,00 3,79 3,00 3,70, 3,70 4,70 4,00 3,5,7 4,00 TIAFS 2,04 2,00 3,79 3,70, 3,79 3,00 4,77 4,00 3,5,7 4,00 AUTOM 01L 2,94 3,70 3,70 4,10 3,70 4,00 4,11 5 4,70 44,00 PARAING FFFS 1700 3,64,7 3,79 3,76 4,10 4,00 4,11 5 4,70 44,51 5,716 4,517 PARAING FFFS 1700 3,64,7 9,79 4,10 4,00 4,11 5 4,516 3,516 3,516 3,516 3,516 3,516 4,515 1,506 4,516 1,506 4,506 4,516 1,506 4,516 1,506 4,516 1,506 4,516 1,506 4,506 4,516 1,506 4		CR4504ER LASTALL, CRFDIT NE4 AUTOS	RATE . PERCENTI ZGROMTNI	46°0 46°0	0°0 0°0	0°0	0°0	44°0 00°0	00°0 0°0
ГПТАL ТОТАL 19,72=100 281,1 291,6 302,6 313,7 323,6 333,7 АUTD REPAINS 264000 369,7 3,77 3,77 5,77 5,79 5,21 5,21 AUTD REPAINS 19,67=100 369,7 367,1 50,7 42,67 5,21 5,79 5,79 5,21 5,21 AUTD REPAINS 19,67=100 369,7 377,3 377,3 377,3 377,9 42,67 AUTD REPAINS 19,67=100 358,4 377,3 377,3 396,9 417,9 45,61 AUTD REPAINS 19,67=100 35,21 377,3 377,3 396,9 417,9 45,61 AUTD REPAINS 19,67=100 35,21 5,27 377,3 35,60 4,56 ITUS 26,800 317,3 5,21 377,3 5,19 5,19 5,26 ITUS 19,75 310,4 5,19 5,19 5,19 5,26 232,41 ITUS 19,67 3,60 3,01 3,01 3,02 235,41 ITUS 19,75 310,4 3,01 3,01 3,02 235,41 ITUS 19,76 3,61 3,01 3,01 3,02 235,41		CONSUMER PRICE INDICESI							
AUTH REPAIKS 1967=100 369,7 367,1 405,2 424,1 401,4 AUTH REPAIKS 7001111 4,70 4,60 417,9 472 5,43 4,00 AUTU INSULANCE PHEMTURS 1967=1001 358,4 377,5 5,19 5,10 5,27 455,7 AUTU INSULANCE PHEMTURS 1967=1001 358,4 377,5 5,19 5,10 5,27 455,7 AUTU INSULANCE PHEMTURS 1967=1001 358,4 377,5 5,19 5,10 5,30 5,27 456,5 Itters 1967=1001 35,21 5,05 212,4 210,6 2,50 2,91 Itters 196,7=1001 200,2 206,2 206,2 212,4 216,6 235,1 Itters 196,7=1001 2,94 3,00 3,01 3,02 3,02 2,50 Itters 200,2 2,05 316,7 3,02 3,01 3,02 2,02 Itters 196,7 3,70 3,01 3,01 3,02 3,25 MITHU UIL 196,7 3,70 3,79 3,70 3,25 PARAING FFFS 176,7=1001 364,7 3,70 3,27 3,26 PARAING FFFS 176,7=1001		rnfal	1967=1001 2680w1H1	2A1.1 3.73	291.6	302.8	313.7	323,8	339,2
AII:U INSUMANCL PARMUNS 1967=1001 356,4 377,3 396,9 417,9 435,7 457,7 457,7 I IUSUMANCL PARMUNS 2CBUATHI 5,21 5,25 5,19 5,30 4,27 4,96 I IUSUMANCL PARMUNS 2CBUATHI 5,04 5,25 5,19 5,30 4,27 4,96 I IUSUMANCL PARMUNS 200,2 206,2 206,2 212,4 5,30 4,27 4,96 I IUSUMANCL 1967=1001 200,2 206,2 212,4 216,4 215,4		AUIN REPAIKS	1467=1001 7600101101	1,969,1 0,73	587.1 9.70	405.2 4.69	a20,3 0,72	ca3,1 C,43	461 °0 4 °0 9
1 11eFS 213,4 213,4 213,4 232,4 1 11eFS 2,93 3,00 3,01 3,01 2,02 2,93 1 1067=1001 274,1 274,1 274,1 274,1 274,1 2,93 2,95 2,91 3,02 2,93 1 1067=1001 274,1 274,1 274,1 274,1 2,95,2 306,5 316,5 35,2 1 1067=1001 2,40 3,70 3,79 3,60 3,60 3,60 3,60 1 9,80 3,70 3,79 3,79 3,60 3,62 3,62 1 9,80 3,79 3,79 3,79 3,60 3,62 3,62 1 9,80 3,79 3,79 3,79 3,70 3,70 1 9,810 3,79 3,79 4,03 4,25 1 9,76 1,610 3,610 4,07 3,75		AHEU INSHRANCE PREMTUNS	1967=1001 26RUW1H1	358 .4 5,21	377.3 5.25	396.9 5.19	417.9 5.30	935°7 6,27	855°
и иптин П.L. 1967=1001 274.1 284.4 295.2 306.5 316.5 316.5 326.6 1 2680 3.78 3.78 3.79 3.80 3.27 3.26 1 ракимс FFS 1767=1001 364.7 379.7 395.2 411.5 427.0 442.0 1 ракимс FFS 1767=1001 364.7 379.7 395.2 411.5 427.0 442.0		TIRFS	14140492	200,2 2,48	205°2 3°00	212.9 3.01	218,0	225,9 3,02	232.1
и ракилис FFS 1967=1001 364,7 379,7 395,2 411,5 427,0 442,0 и ракилис FFS 11,5 1001 4,10 4,09 4,11 3,76 3,51		ուրու թյե	1967=1001 26804141	274 81 5,80	284 4 3 • 7 8	295°2 3°79	306 ° 5 3 • 80	316.5	326.f
	= = =	PARAING FFFS	141/0893	369.7	579.7 4,10	395.2	411,5 4,11	427.0 3.76	842°0 3°51

ASSUMPTITINS FUR EXUGENDIS VARIABLES 1975 - 2000

KI I

_
٠
-
α
-
_
-
2
2
2
۹.
-
3
7
1
5
÷
5
44
e
c
4
-
ē
-
-

THE ALL ALL ALL ALL ALL ALL ALL ALL ALL AL							
IGENERALI PERSONAL INCOME PERSONAL INCOME TAXES		1001	2661	1995	9661	1061	661
I PERSONAL SMCOME TAXES	AILL CURR SI	46AC, A0 6,00	4761 69 6,00	5259,30 6,00	5514,90 6,00	5909, ¢0 6,00	6269.0 6.0
	BILL CURP 51 26RUWTH	671,50 6,13	924,70	981.10 6.10	1045.00 6.11	1104,50 6.10	1171,8 6,0
I TRANSPER FATIENTS	BILL CORR SI	604°60 6.11	691,50 6,10	600,60 6,10	722.10	766.20 6.11	812,9 6,0
 EMPLIJYMENT 	1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	51518°°	112369° 0,62	\$ \$ 3 4 6 3 °	1142568 0,70	114835°	115630 0.65
I UNEMPLOYMENT RATE	2 CHOMTH I	3, R0 -2,56	3,70 -2,63	3,60	3,50	0°20 0°30	= ≥ • 0 • 0
I I I NTEHEST RATESI							
I MARTHUM PA3SHURK SAVING	S PERCENTI 2GROWINI	5.50 0.0	5°50 0°0	5°50 0°0	5 ° 5 0	0 ° 0 0 ° 0	2°2
COMISINER INSTALL. CREDT NEW AUTOS	T RATE A PENCENTI PENCENTI SGRUWTH	0 0 ° 0 0 ° 0	0 0 0 0 0	00°0 0°0	0 0 0 0 0	9	9 C 9 G 9 G
ICUNSUMER PRICE INDICES							
TOTAL.	1967±1001 25H0x1H1	345,0 3,23	355,9 5,18	367.8	379.1 3,19	391°3 5°22	403. 3.1
I AUTO REPATOS	1967=1001 1967=1001	a77.7 9.06	a 99 e 2 4 e 05	519.3 519.3	540°3 4,09	562.1 9.04	504, 4,0
I AUTO INSURANCE PREMIUMS I	1967=1001 268051H	a 75, a a , c 5	456,9 4,50	519.0 8.07	5 a 2 , 4 a , 5 1	586. h 9. do	592. 415
I I 71нf S I	567=1001 \$680×141	239.1 3.02	296.5 3.01	253.6 2,96	201 . 3	269.1	277° 3,0
wntow ot.	1967=1001 2680×141	337,6	3¢8•5 3•29	359,9 5,27	378°6 3,25	303°7 3°26	396. 3,2
I PAHRING FFFS	1467=1001 26R0wTH1	451,4 5,50	a71,5 3,51	490,2 3,52	507,9 3,52	525,3	543. 3.5

ASSUMPTIONS FOR EXOCHANUS VARIABLES 1975 + 2000

TARLE 2.02 ECNUMMIC VANTARLES

NEMSINAL INCI'IL	14180221114	00°4 00°4	7038.20 6.00
PERSONAL INCOME TRACS	DILL CUMR SI	1243,30	1319.20 6.10
TRAUSER PAYAFUTS	BILL CURK SI XGRUNTHI	867,59 6,10	915.10
тини	THOU PERSONSI XGROWINI	116427. 6.69	1:7:26.
UNEMPLOYNENT HATE	1 H L NG H D Z	3,30	5,20
TEHIST HATEGO			
VAX140M PASSROOK SAV14G	PERCENTI 26HOWTHI	5.50 0.0	5.50 0.0
GINSINFR TNSTALL, CHENTI Hem Autids	PERCENT SCRONT	00°0°0	0 0 0 0 0 0
ISLUMER PHICE INDICISI			
T117.A1.	1967=1001 2640#1H1	416.8 3.21	0,0°0 3,18
AUIN REPAIRS	1967=1001 26RQW1H1	₽08,5 4,04	633.1 9.59
aurti Insukanct purmiums	196731001 2680WIHI	618.5 4.45	626 1 4 87
1 HE S	1967=1001 26MUm1H1	285°S	29400
40104 01C	1967=1001 2640w144	409.1 3.27	822,41 3,24
PAUKING FLES	1967=1001 26PDw141	562.8	582.6

ASSUMPTITINS FOR EXUGENDUS VARIABLES 1975 - 2000

こうちょうちょう こうちょう こうちょう ちょうちょう しょうちょうしょう ちょうちょう ちょうちょう ちょうちょう ちょうちょう ちょうちょう しょうちょう
ころう、 スームのなるまである、 思っていたからればないない、 アメールから、 ステムなど、 ステンプの人気になっていたいの、 あちょう、 よいのないたいできょうかん やまたのでのないないない

1 F M		1975	1976	1977	1978	1979	-
auth taxes							
FUICHASE TAX, ALL CLASSES	FERCENTI XGROHTHI	a, 54 1,57	4,62 1,84	4,71 1,84	4,80 1,84	4 - 88 1 - 84	3 -
SIIAC MAPAC T	RATE I XGROWTHI	0°0	0 * 0	0*0	0 * 0	υ <u></u> ,0	ئ
CUMPACT	LATE L ZGRUNTHI	0°0	u°o	0 * 0	0 * 0	0 1 0	° C
321S=01M	RATEI 2GROWTHI	د • 0	0 0	0 * 0	0 * 0	0 0	°
FULL 312F	RATE I Lerunthi	0 * 0	0 0	0*0	0 * 0	0 * 0	° 0
רוואטאא	RATE1 ZGHÖNTHI	0 * 0	0*0	0*0	0 * 0	0 * 0	•
OWNERSHIP TAXE ALL CLASSES	RATE 1 2GHDWTHI	0 0	0 * 0	0.0	0*0	0 * 0	°0
SilhCOMP &CT	HATE I ZGHOWTHI	0°0	0*0	0 * 0	0 * 0	0 * 0	• 0
C (1)+PAC 1	HATE C TGPOWTH	0 * 0	0 ° 0	0 * 0	0 * 0	0 * 0	•0
*10-\$17F	RATE P	0 * 0	¢*0	0 ° 0	0 * 0	0 * 0	ō
LULL SIZE	RATE 1 ZGROWTHI	0 ° 0	0*0	0*0	0 * 0	0*0	ດ້
LITURY	44761 X6404141	0°0	0*0	r. * 0	0°0	0 * 0	•
I AUTOMALE STRIKE DUMMY		0,0	0*0	0*0	0*0	0*0	0

A3-22

.

ASSINITIONS FUR EXOLFINOUS VANIABLES 1975 - 2000

■ 「そうないない」のないであるというないのではななないのないないないないないないないないないないないないないないないのです。 いたかい いたい いたい いたい いたい いたい いたい

and the second
12ALE 2.03 ECONOMIC VAHIABLES - CONTINUED

L ! NE	I T E M		1991	1982	1983	1984	1985	1986
	PUPCHASE TAXE ALL CLASSES	PERCENT ZGROWTH	5.07 1.84	5,16 1,85	5,25 1,89	5,35 1,84	5, a5 1, 84	5,55 1,84
592	SUHCOMPACT	RATE I SGROWTHI	0 0	¢°0	0 * 0	0 * 0	0 * 0	0 0
	CIMPACT	RATE I SCHOWTHI	U ° O	0 * 0	0 * 0	0 0	0 ° 0	0 * 0
202	3715-211	RATE I 26POWTHI	0 0	0*0	0.0	0*0	0 * 0	0 * 0
359	FULL SIZE	HIMOADX	0 * 0	0 0	0 ° 0	0 * 0	0 * 0	0*0
	רוואטאע	HATEI ZGROWTHI	0 0	0 ° 0	0 ° 0	0 ° 0	0*0	0 * 0
222	UMMEHSHIP TAXI ALL CLASSFS	RATE 1	ں • و	0 * 0	0 * 0	0 0	0*0	0*0
222	SHRCHMPACT	RATE : XGN0111	0°0	0°0	0°0	0*0	0 * 0	0 * 0
232	CrivpaC1	RATE 1 HTWOMDX	9°0	?°0	0 • 0	0*0	0 * 0	0.0
52	M10-517F	нате 13тан 19тания 26ромтні	0 * U	0°0	0*0	0*0	0 * 0	0.0
22.2.	FULL 317£	RATE I SGROWTHI	0 * 0	0 * 0	0.0	0*0	0,0	0*0
111	Гихия	RATE 26204791	0°0	0°0	0°0	0°0	0 ° 0	0*0
100	VUTOMORILE STRIKE DUWOTI		0,0	0*0	0,0	0*0	0,0	0 0

A3-23

. .

ASSUMPTIONS FOR EXOGENCIES VARIABLES 1975 . 2000

116 11		1987	1988	1989	1990	1991	2001
		8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	5 0 0 5 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6	***		6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8
PHACHASE TAXI ALL CLASSES	PERCENT 2GROWTH	5.65 1,89	5.76 1.84	5,86 1,84	5.97 1.85	6.78 1.84	6 • 1 • 1 • 8 •
SUHCOMPACT	HATEI ZGROWTHI	0°0	0 * 0	0 0	0 0	0 • 0	0 * 0
COMPACT	RATE I XGR()WTH I	0.0	0.0	0°0	0 * 0	0 * 0	0 * 0
321S-01M	RATEI TGHIWTHI	0.0	0°0	0 * 0	0 * 0	0 * 0	0 * 0
FILL SIZE	RATE	0.0	0 * 0	0 * 0	0 * 0	0 * 0	0 ° 0
۲۱۱۸۱ <i>۱</i> ۲۸	RATE ZGROWTH I I	0 0	0 ° 0	0 * 0	0 * 0	0 * 0	0 0
I UNNERSHIP TAXI ALL CLASSES	RATEI 26904THI	0 * 0	0*0	0.0	0 * 0	0 * 0	0 ° 0
SURCOMPACT	RATE I SGRDWTH I	0°0	0*0	0*0	0 * 0	0 * 0	0 * 0
COMPACT	RATE1 26404141	0.0	0 0	0 * 0	0 * 0	0 * 0	0*0
M10-512F	RATE XGRUWIH	0*0	0*0	0*0	0*0	0 * 0	0*0
FILL SIZE	RATE I SGRUWTH I	0°u	۵ ، د	0.0	0*0	0*0	0 ° C
1.0×04×	RATEL ZGROWTHI	0 • 0	0 ° 0	0 * 0	0 ^ 0	0 * 0	0 ° 0
і Тантачаяце зтятке римму		0 * 0	0°0	0.0	0.0	0.0	° 0

A3-24

i

and the second s

		T A B	LE 2.03 FCUN	MIC VARIABLE	S . CONTINUE	0		
L I NE	1 E H		1993	1994	1995	1926	1991	1998
11		0 0 0 0 0 0 0 0 0 0 0 0 0 0						
.	PUPCHASE TAXI ALL CLASSES	PERCENT 2GRUNTH	6,31 1.89	6,42 1,84	6,54 1,84	6.66 1.84	6,78 1,84	6.91
532	SURCOMPACT	RATE I TGROWTHI	0 ° 0	0 ° 0	0,0	0,0	0 • 0	0° J
8 6 6	CUMPACT	HATEI 26ROWTH	0 ° 0	0°0	0*0	0 * 0	0 * 0	0 * 0
===	H1D-312E	LUIMORDZ	0*0	0*0	0 * 0	0 * 0	0 * 0	0 0
2.5.2	FULL SIZE	RATE 2GPOWTH	0 * 0	0°0	0 ° S	0 ° 0	0 * 0	0.0
19102	1 (1×(1×)	RATE XGHOMTH	0 * 0	0 0	0 * U	0 * 0	0 * 0	0°0
122	DWRIFHSHIP TAXI ALL CLASSES	RATE 2GPOWTH	0 * 0	0°0	0*0	0*0	0 * 0	0 0
251	SUNCIMPACT	KATE I 26R0WTH I	0°0	0 * 0	0 • 0	0*0	0 * 0	0°0
122	כמאודאכל	RA151 268011111	0 ° U	. 0°0	0 * 0	0*0	0,0	0 * 0
533	410-512F	RATE I STORDETHI	0 * 0	0 * 0	0*0	0 * 0	0 * 0	0 * 0
351	FULL SIZE	RATE 2GHOMTHI	0° J	0*0	0 * 0	0*0	0 * 0	0 * 0
325	Гихина	RATEI XGROWTHI	u*o	0*0	0*0	0*0	0 [°] ,0	0 * 0
100	นเรตที่ต่านไปย์ ราหาพย์ ถิ่นที่พิพ		0 0	0*0	0 * 0	0*0	0°0	0 * 0

A3-25

ASSIMPTITINS FUR EXUGENTINS VARIAHLES 1975 - 2000

The start of the start was a start of the

ASSIMPTIONS FOR EXACENCIAS VANIABLES 1975 - 2000

1

TARLE 2.03 ECONDUTE VARIABLES - CONTINUED

146	1164		0001	2000
1140		L 0 0 0 0 0 0 0 0 0 0 0 0 0		
	ΡUHCHASE TAX; ALL LLASSES	LEACENTI 2.690MTHI	7.04	7.57
292	Stuff Cflwip & C T	RATE1 \$64097141	0 * 0	0°0 .
	C DAPAC 1	RATE I 26R04141	0 0	0.0
	M10+512f	RATE I SGROWTHI	0 * 0	0.0
	FULL SIZE	1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4	0 * 0	0°0
5	1 IIXUPY	HATEI XGHDATHI	0 0	0.0
	י איזיאנאנאנאנאנאנאנאנאנאנאנאנאנאנאנאנאנאנ	RATE Sgruwthi	0 • 0	0 * 0
	SUHCOMPACT	I I I VU I I I VU I I VU I I VU I VU I V	0 0	0 * 0
	CUMPACT	4 A T E T 2 GRUM1N1	0 * 0	0.0
	M1C=S12E	HATEI SGRUWTHI	0 * 0	0 * 0
	PULL 5126	RATEI XGROWTHI	0 * 0	0°0
	LUXURY	RATE I XGROWTHI	0.0	0*0
1141	TOMORILE STRIKE DUMAY		0°0	0*0

ASSUMPTIONS FOR EXOLENDUS VARIARLES 1975 - 2000

.

いたい いたい とうしょう しょうてい たいたい しょうしょう しょうしょう ないない しょうしょう ないのう しょうしょう
i

N 1 1 1		5261	1276	1977	1978	6151	19
DTHER COSTS AND PRICES		5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	• • • •
DUN. AUTO INPUT PRICE INDE	1912=1001 1917=1001	126.1	134,n 6,40	143,0 6,08	152,6	161.9 6.09	170
FUR. AUTO EXPOSET PHICE INC	1970=1001 2680/0114	186,4 12,03	203,1 8,96	211,3 4,04	226.1	241 9 6 9 9	256 5
TRANSPORTATION PRICE	141M049%	121.7	123.8	126.4 2.10	130,0 2,85	136.A 5.23	142 9
HETAIL GASULINE PRICE	\$76ALI \$640MTHI	0,561 6,21	0,585 4,39	0 + 6 2 6 6 - 9 2 6	0 + 6 8 3 9 + 1 4	0,733 7,32	0,7
STFFL SCHAP PHICE	S/GRDSS TINI 20PUTH1	70.83	75,08 6,00	79,58 5,99	84.36 6.01	89°42 6°00	9 th 9

ASSUMPTIUNS FOR EYOGEMOUS VARIABLES 1975 - 2000

and the second
0
-
-22
٤.
=
5
ò.
ŭ
-
တ
-
-
8
-
-
2
5
-
U
~
Ξ.
2
Z
5
ω
-
-
č
~
يسة
1
-
2

1 1 1	I	1461	1982	1983	1984	1985	1936
ITHER COSTS AND PHICES		U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
NOM. AUTO INPUT PRICI	E 140EX 1972=1001 26PUNTH	177.0 3.81	163,2	190,2 3,02	197.0 3.58	203,3 3,45	211,3
FAH, AUTO ExpArt PRI	CE INDEX 1970=1001 2620-141	264 0 4,52	280.0 4.48	292,6 4,50	305,8 4,51	319.6 4,51	333,9 4,47
TRANSPORTATION PUTCH	14106.X 1972=1001	147.0 3.16	152.1	157.5	162,1 2,92	166,3 2,59	170,5 2,53
RETALL GASOLINE PHIC	S/GALI 2GRUNTHI	0.843 7.22	n, 903 7,11	0,965 59,85	1,031 6,84	1 • 102 6 • 90	1,172
STEEL SCHAP PHICF	SZGROSS TIMI ZGROWIHI	99°53 5,00	104,50 4,99	109,75 5,06	115,21	120.97	125.81

ASSUMPTIONS FOR ATTENTIONS VARIABLES 1975 - 2000

*Chille

NE		111			1981	1988	1769	0661	1991	19
121	HER COST	IS AND PRICEST	8 8 8 8 8	0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
	D0M. AU1	IN INPUT PRICE IN	NDE K	1972=1001 2680WTH1	219,2	227.5	235.7 3.70	244,4 3,69	252,9 3,48	261
	FIR. AUI	IO EXPORT PRICE.	INDEX	1970=1001 XGRUMTHI	349.0 0,52	364,7 4,50	381,1 4,50	398.2 4.49	a 1 a . 2 a . 0 2	830 3.
	1 PANSP()	FATTON PRICE IN	X JQ	1972=1001 2680ATH1	174,7 2,46	179.1	183,6 2,51	164.1	55°2	147 2+
	RFTALL (GASOLINE PRICE		\$ CAL \$GROWTH	1,241	1,315	1 - 374 6 - 04	1,477 5,95	1,557	4 ° P
= = =	STEFL SC	CRAP PRICE	\$/6	RDSS 71N1 26R0w1H1	130,85 4,01	136,08 4,00	101.52	147,18 4,00	153.07 4.00	159. 4.

ASSUMPTIONS FOR EXOCEPCOUS VARIANLES 1975 - 2000

1

TARLE 2.04 ECDHOMIC VARIARLES - CONTINUED

L 1 m	1 1 E 1	1	1973	1994	5001	1946	1991	1998
~ ~ 5	DUM. AUTO IMPUT PUICE INDEX	1972-1001 2640mTHJ	271.0 3,51	260°9 3°47	290,3 5,53	299,8 3,21	309.7 3.30	320,0 3,53
595	FOR. AUTH EXPINI PRICE INDEX	1970=1001 264hm140	448.0 4.02	465°9 4,00	684°5 3°99	503°3 4°00	52400	5 a 5 , 0 a , 0 1
z e c	TRANSPORTATION PHICE INDEX	1972=1001 2640v1H	202,6 2,48	207.7 2.52	212.9	218,2 2,49	223,6 2,41	229.2
222	RETAIL GASOLIVE PHICF	\$76AL \$680m101	1 • 712 0 • 89	1 796 9 70	1,000 4,00	1,976 4,88	2,073 2,70	2,175
= 5 9	STEFL SCHAP PRICE \$1	141%049%	105,56 4,33	172,18°	179.37 8.00	186°23 4,00	193,64	201.43

ASSUMPTITUMS FOR EXUGENDUS VANJAHLES 1975 - 2000

TARLE 2.04 ECONOMIC VARIABLES - CONTINUED

VE 11FR		6661	2000
	· · · · · · · · · · · · · · · · · · ·	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	-		-
I DOW, AUTO INPUT PHICE INDE.	1912=1001	330.5	341,41
	LHINGROX	3,2A	3,301
			-
I FOR. AUTO EXPIRE PRICE IND	1001=0161 X	566.8	589,51
	ZGROHTH:	4,00	4,001
	-		-
I TRANSPURTATION PRICE INDEX	1972=1001	255,0	240,81
	XGROWTH1	2,53	2,071
	-		-
I RETAIL GASOLINE PPICE	3/GAL1	2.282	2.3941
	XGROWTHI	4,89	. a 951
	-		-
I STEEL SCHAP PRICE	8/CR055 11N1	209,49	217,071
	XGROWTHI	4.00	4.001

ASSUMPTIONS FOR EXOCENDUS VARIANLES 1975 - 2000

301.6 1980 2650. 3500. -2.78 87.0 -1.14 205.A •7.55 106.0 202.5 2150. 2900. \$770. -1.82 4170. -1.65 153.0 350.6 -0.98 2375. •3.05 3150, 160.7 1979 4240. 3150. 2950. •2.78 3070. 3600. 3840. •1.54 0°0°0 222.6 102.1 106.0 279.0 2200. 2700. 118.7 377.4 101.3 1978 64.0 -4.66 2520. 2200. 3200s -0,93 2700. 3700. 4300. 3200. 151.2 200.0 109.0 296,0 135.4 595.0 •5.34 169.6 1977 3820. -2.11 -2.11 -2.33 TARLE 2.05 AUTO CHARACTERISTICS -3,50 1230. 4020. -6.07 4420. -5,55 240.0 110.0 31A.0 159,A -8,56 7250. 0.0 2750.0 418.0 • 6.07 172.8 3200. 1976 2750. #2A0. 92.5 •8.45 254.0 +1.01 2658. 2250. 12AC. 3960. -1.96 €680. -5,95 162.4 111.0 324,5 377.0 445.0 -3.49 110.0 3200. 2000-23 3102. 1975 2726. 2300. 4019. -0.46 e517. -1.e9 4916. -1.07 3200. 160.5 9.53 90.0 252.4 112,0 •1,29 329.5 391.9 139.2-0.31 1 FUNNOS 1 P004051 POUNDS1 \$GROUTH1 POUNDS1 PUIMERI POUNDS1 2680A141 CURIC INCHEST CUBIC INCHESI CUBIC INCHES CUPIC INCHESI CUBIC INCHESI CURIC INCHESI 14140892 CURIC TECHES CURIC INCHESI PULLEUS EGRO-TH POUNDSI 141004141 1176 1176 117 117 117 117
 15
 410-51/6

 17
 FULL 51/6

 17
 FULL 51/6

 18
 FULL 51/6

 19
 EULEUEY, DAVE 511C

 21
 LUTUHY, FABE16W

 21
 SUUCUMPACT, DAVE 511C

 21
 SUUCUMPACT, FABE16W

 22
 SUUCUMPACT, FABE16W

 23
 SUUCUMPACT, FABE16W

 24
 CUUMPACT, FABE16W

 25
 SUUCUMPACT, FABE16W

 26
 SUUCUMPACT, FABE16W

 27
 SUUCUMPACT, FABE16W

 28
 SUUCUMPACT, FABE16W

 29
 SUUCUMPACT, FABE16W

 20
 SUUCUMPACT, FABE16W

 21
 SUUCUMPACT, FABE16W

 22
 SUUCUMPACT, FABE16W

 23
 SUUCUMPACT, FABE16W

 24
 SUUCUMPACT, FABE16W

 25
 SUUCUMPACT, FABE16W

 26
 SUUCUMPACT, FABE16W

 27
 SUUCUMPACT, FABE16W
 SURCHMPACT. DOWESTIC SUNCIMPACT. FUNLICH COMPACT. POWLSIIC COMPACT. FORFICH LUTURY, FOREIGN 441 561 LUFURY, FO 212 2 77 -ーてつ -Ξ Ξ Ξ

ASSUMPTIONS FOR EXOREPONS VANIANLES 1975 - 2000

1

1 Derive

balls in Aller

TARLE 2.05 AUTO CHANACTERISTICS

Constrain 2300 2554 2700 2105 2701 2105 2701 2105 2701 2105 2701 2105 2701 2105 2701 2105 2701 2105 2701 2105 2701	÷.	8 8 8	,	1001	2001	1983	1934	1945	1986
Runchwarth 2100 2550 2100 2570 2100 2570 2100 2700	Ξ.	URR WE [GH] 1							
Synthett, Tuttin Constraint 2100 2100 200		SUNCOMPACT. DUMESTIC	INTWOND'S	2390. -3.16	-2.17	2200.	2150.	2100.	2070.
Churatti, Burdistic FRUMRS 2775, 255, 255, 255, 255, 255, 255, 255,		SURCOMPACT. FURFICN	PUNNDS1	2150. 0.0	2100.	2190.	2050. -2.38	2050. 0.0	2000.
Солисст. Fourticn 410-3124 Full 3127 Full 3126 Full 31276 Full 31276 Full 31276 Full 31276 Full 31276		COMPACI. DOMESTIC	FUUNDS1 26RUMTH1	2900. - 9.70	2725.	2650.	25/5. -2,6)	2500	2860. -1.00
v10-517k FRU-R35k Sample Sam	225	COMPACT, FOWEIGH	INTEOPOS SGUNDA	2600.	2550. -1.42	2500. -1.98	2950. -2.00	2000-2-00	2350. -2.08
Full 317 Full 317 POUNDS 170_{0} 570_{0} $51,24$ $51,76$		410=517E	FRURDS1 \$680#THI	3000° -2.80	3300. -2,04	. 3200. -5.03	3100.	3000. -3.23	2960. -1.33
LUALINT, Investify FOUNDS 1100 1550 5500 <th< td=""><td></td><td>FULL SLZF</td><td>POUNDS1 RGHOATHI</td><td>3700. -1.86</td><td>35P0. • 3.28</td><td>3960. • 3. 35</td><td>5530. -5.70</td><td>\$200. • 3.90</td><td>316C. -1.25</td></th<>		FULL SLZF	POUNDS1 RGHOATHI	3700. -1.86	35P0. • 3.28	3960. • 3. 35	5530. -5.70	\$200. • 3.90	316C. -1.25
LUTURY, FORFIGN POUVOSI JI00 J050 J050 J000 J110 J000 J110 J010 J010 J010 J010 J010 J010 J010 J010 <thj010< th=""> J010 J110 J010 <thj110< th=""> J010 <thj110< th=""></thj110<></thj110<></thj010<>	212	LUXUAT, DAMESTIC	FOUNDS1 \$6RUMTH1	a100. -1.65	3950e - 5e6e	5800. - 3,80	3650. • 3.95	3500° - 2 . 1 1	3960. -1.12
71 117.0 1		LUTUPY, FORFIGN	PDUNDS1 XGH00TM1	5100.	3100. 0.0	3050° -1,61	3050. 0.0	3003 . - 1 . 6 4	30000
SUNCENTER UOVESTIC CUBIC NOVESTIC UUCUNESTIC UUCUNESTIC </td <td></td> <td>NGINE UISPLACEMENTI</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		NGINE UISPLACEMENTI							
SUNCUMACT, FORLICN CIRIC INCHES 86.0 85.0 83.0 81.0 82.0 81.0 82.0 81.0 82.0 81.7 91.2		SUNCOMPACT. UDVESTIC	CUBIC 14CHESI	124,2-	117,0 -5,69	110,0 -5,93	101.5	105.0	103,5-1,43
Cnureact, NuwtSfic CinNte I, CH(S) 177,1 45,6 156,6 27,91 11,6 Cnureact, Fowtieu CIBHE INCHES 100,0 -6,30 -6,30 -6,30 -5,91 -1,6 Cnureact, Fowtieu CIBHE INCHES 100,0 100,0 76,0 -5,91 -1,6 Cnureact, Fowtieu CIBHE INCHES 100,0 100,0 76,0 -5,00 -2,10 -1,0 -1,0 -2,00 -2,00 -2,00 -2,10 -1,0 -2,10 -2,10 -2,10 -2,10 -2,10	===	SUNECIMPACT, FOULLEN	IHJMONDZ INJMONDZ	86.0	85,0 -1,10	88.0 •1.18	83.0 -1.19	82.0	61.0 -1.22
7 7 <th7< th=""> <th7< th=""> <th7< th=""> <th7< th=""></th7<></th7<></th7<></th7<>		CO179AC1, PUMESIIC	CUNIC IFCHESI SGROWTHI	144°0 -84	177.1	165.0	150.5	150,0	197,6 -1,60
Image: Non-S12f Ether I NCHISt Zab,5 ZN1,0 ZIb,0 Z01,5 195,0 192,0 VIO-S12f Ether I NCHISt Zab,1 -6,10 -6,29 -6,31 -3,23 -1,3 VI Ether I S17f Ether I NCHISt Zab,1 -6,37 -5,32 -1,3 VI Ether I S17f Ether I T NCHISt Zab,1 266,9 233,1 220,0 -3,23 -1,3 VI Ether I S17f Ether I T CHISt Zab,1 266,3 233,1 220,0 -3,39 -1,3 VI ULULUUV VI -6,36 233,1 220,0 -3,40 -1,2 VI ULULUVV P0,151 -0,31 316,0 290,5 273,0 -3,40 -1,2 VI ULUUVV P0,151 -5,10 216,0 290,5 273,0 -5,40 -1,2 VI ULUUVV P0,10 290,5 273,0 -5,40 -1,12 VI ULUUVV T -5,10 27,1	246	COMPACT, FOWEIGH	CUBIC INCHESI 26404741	04°0 104°0	102.0	100.0	78.0 -2.00	96.0 -2.00	94°0 •2•08
ul FULL 517F CURIC 17 СНС51 2/05,8 2/64,5 250,9 233,1 220,0 221, 51 СЦИНИЧ, ЛОНГ 517 СЦАТС 17 СНС51 200,8 310,0 299,5 273,8 253,9 75,9 75,9 71 СЦИНИЧ, ЛОНГ 511 СЦАТС 17 СНАТС 1300,8 310,0 299,5 273,8 76,15 75,5 759, 8 СЦИНИЧ, ЛОНГ 511 СЦАТС 17 СНАТС 15,10 77,14 0.010 290,5 273,8 76,15 75,10 155,0 155,0 155,0 77,0 70,05 75,10 150,0 155,0 153,6 77,0 70,05 75,10 150,0 155,0 153,6 77,0 70,05 75,10 150,0 155,0 153,6 75,10 152,5 751,0 155,0 155,0 153,6 75,05 751,7 75,00 155,0 153,6 75,10 152,5 751,0 155,0 155,0 153,6 75,05 751,7 750,00 155,00 20,77 750,00 155,0		410-512F	LUBIC INCHISI ZGROATH	5°9°5 • • • •	0.11.0	216.0 •6.49	201.5	195.0	192.0
λ1 LUKURY, NOFFFIC CIAIC LICES 340,8 290,5 273,8 76.5 290,4 λ1 LUKURY, NOFFIC CIAIC LICES 54,0 -7,14 -0,60 -7,03 -4,15 -1,1 λ1 LUKURY, FORFIC CIAIC -5,10 -7,14 -0,60 -7,03 -4,15 -1,1 λ1 LUKURY, FORFIC CIAIC 155,0 155,0 155,0 151,6 150,0 1 LUKURY, FORFIC CIAIC LICERES 155,0 155,0 152,5 151,3 150,0 1 LUKURY, FORFIC CIAIC LICERES 155,0 155,0 152,5 151,3 150,0 1 LUKURY, FORFIC CIAIC LICERES 156,0 -1,50 -0,05 -0,17 -0,16		full Size	1 20415 12 54651 26404141	285.8 -4.91	269.5 -6.33	250,9 -6,55	233.1	224.0 -3,90	221.2
1 [11111] 1 [1111] 1 [1111] 1 [111] 1 [111]		LURURY, MONESTIC	CHAIC INCHESI	340.5	516.0	298,5 +6,80	273.8 •7.03	262,5 -8,13	259,5
		רוזבויהי, בחמבוכא	CHALC THEMES	158.0 -1.68	-1.90	153.8	152°5 -0,85	151 . 1 -0, 79	150.0

ASSUMPTIONS FUR EXAMPLEMOUS VARIABLES 1975 - 2000

Salar S

TAULE 2.05 AUTO CHARACTERISTICS

1417	1 5 5 5		1401	1961	1989	0661	1651	2001
Ξ	1028 & 16411	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
	SUNCOMPACT, NOVESTIC	14160292 1504002	2000.	2000. •1.96	1950, -2,50	1900. •2.55	1900. 0.0	1900.
5.95	SUNCTIMPACT, FONEICN	1 8 G N U N U N U N U N U N U N U N U N U N	0°0 0002	1950. -2.50	0.0	1900. -2.56	1900. 0.0	000
8 F 5	COMPACT. DOMESIIC	1	2920. -1.63	2370. -1.65	2342. -1.68	2300. -1.71	2300; 0.0	2300.
-2-	COMPACT. FORFIGN	POHHOS SCRONTHI	2300.	2250.	2200.	* 0 * 0 5 * 0	2200	2500°
	M10=512E	26806.1H	2920.	29A0.	-1.39	2800. •1.91	2600	2800°
121	full slaf	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3120.	30A0. -1.20	5000. -1.3J	1000. -1.32	• 0 0 0 F	3000.
222	LUTURY DOWESTIC	15010114 15010114	3a20. -1.16	33R0. -1.17	3300. -1.28	3300.	3300. 0.0	5300°
222	Luzura, Frigi 16%	I MEMDADX	2950. -1.01	0°0 2020°	2900. -1.69	2930. 0.0	2400°	2400°
222	tribustate gradem							
121	Sustivenct, Dovestic	CURIC PACHESI SCHULTHI	102.0	0°011 •1•90	97.5	95°5	0°0	0°0 0°2
333	SURCHUPACT, FUNCTON	CHRIC THCHESI SGUNATHI	A0.0 -1.23	80°4 0°0	0°0°0	80°9	80°0 0°0	80°0
222	COMPACT, DUNESILC	CUBIC 14CHES1 26404141	105.2 -1.03	132,8 -1,65	1 a 0 . 4 - 1 . 6 8	150.0	138.0 0.0	138.0
1/1	CANPACT, FOREIGN	CURIC INCHESI TCHONTHI	92°0 91°2=	90.0 -2.17	80°0 -2°22	лл. 0,0	88°0 0°0	0°69 0°0
5 - 5	410-512k	CUBIC 14CH551 14140415	180.8 -1.35	181.2	170.5 •1.39	182.0	182.0 0.0	1 A 2 4 0
	FULL 5178	CHILC 19695	218,9 -1,21	215.6	212.8	210.0	210°0	0°0 510
477	Liteljuy, Print STIC	1 Lumbe 126451	256.5 -1.16	253,5	250.5 -1,18	2#7.5 -1.20	207,5	287.5
202	LIIIIHY. P.RETG	CURIC INCHESE SCHEMTHE	5 ° 4 ° 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9	147.5 -0.87	146,] -0, 61	125,0 -6,89	195.0 0.0	0.0

assignetting for Exacted is vaniantes 1975 - 2000

11

TARLE 2.05 AUTO CHARACTERISTICS

111	1 1 6 14		1993	1994	5001	4991	1001	4991
1	CU4A hEIGHTI		0 0 0 0 0 0 0 0 0 0 0 0 0 0					
	SURCIMPACT DUMESTIC	400005 141=025	1900 - 0 - 0	000 °C	1900 - 0 - 0	0°0	0°0	1900. 1900.
225	SIIPCIMPACT. FORLICN	POILIND S1	1 0 0 ° 0	1900.	• 0 • 0 1	1900.	000° 0°0	1 900 0 0
** 0	COMPACT, DINESTIC	PCUM551 \$5RUM101	2300°	2300 . 0,0	2303. 0.0	2300.	2300.	2300. 0.0
125	COMPACT. FOREIGN	1502004 1502004	2206. 0.0	2203. 2900	2200.	2200.	2200-	2200°
- <u>-</u> -	MIN-512E	LH1MDS1 164Uh1MDS1	2600. 0.0	2800.	2300.	2300°	2020°	2800.
121	1215 Int	POUNDS1 26PDH1H1	3000.	\$000°	3000 .	3000. 0.0	3000. 0.0	3050. 0.0
201	LURY, DOMESTIC	1900002	\$300°	3300.	5 5 0 0 . 0 . 0	3300. 0.0	3300.	3300°
231	Luxumy, Porfigu	POUNDS1 26R0H1H1	0°0°2	0°0	2900, 200	2000	5900+ 500+	2900°
182	INGINE DISPLACEMENT							
102	SURCOMPACT, D'INESTIC	CURIC INCHESI 26HOMTHI	95°0 0°0	950 0.0	9 \$ 6 9 • 0	0°0 6°0	6 0 ° 0	9 ° 0 9 ° 0
121	SURFORDER FUNESCN	CHRIC INCHESI SCHOMINI	0°0 0°0 0°0	0°0°0 0°0	80°0 0°0	60°0 6°0	0 0 0 0 0 0	0°0°0
222	נחייף אנו אטיין אוניאל	CUAIC 14CH51 26RD4141	133.0	130.0	139.0	138.0 0.0	136.0	154,0 0,0
191	CONFACT FIRE SCH	<pre></pre>	0°0 .	0°0°	6.0 0.0	68.0 0.0	0 0 0 0 0 0	87.0 0.0
100	J218-011.	CUALC TWCHESI SGRUNTHI	182.0 0.0	0°0 185°0	1 R 2 . 0 0 . 0	162.0	152.0 0.0	167.0
1.25	FULL SIZE	CURIC TACHTSI	210.0 0.0	216.0	219.0	210.0	210.0	210.9
		CUAIC 14C44 51 1414032 1414032	2ª1,•S	547°2	287.5	227.5	2ª7 °5 0 ° 0	22705
555	CHAURT FORFICM	CUBIC 144 HESI 26804111	1 4 5 ° 0 0 ° 0	1 e 5 , 0 0 , 0	145,0	165,0 0,0	145.6	145,0

ASSIMPTIONS FOR EXUGENOUS VARIABLES 1975 - 2020

こうちょう とうない しんしょう しんない ないない たいない たいない しょうしょう しょうしょう しょうしょう

n
Ξ.
-
èn -
-
Ωr –
les -
-
0
-
<u>a</u>
2
<u>.</u>
0
C
=
5
- F
5
C
•
<u>~</u>
~
ie .
2
-

2000	1000	0°0°0	2300.1	2200	2800.1	3002 -	3300.1	1 0 ° 0 2 0 ° 0		42°0	0.0	154.0	2 0 2 2 2 2 0 2 2 2 2	182.01	210.01	20.0	10.01
	0 ° 0 ° 0	1400° 000	2300.	2200.	2000 2000	3000° 0°0	3500 0.0	0°0 5000		95°0 0°0	0°0 0°0 0°0	138.C 0.D	6 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	1 A 2 0	210°0 210°0	217.5 0.0	1 4 5 • 0 0 • 0
_	L CRUMPS	LAINDON BOUNDS	POUNDS1 \$68041H1	PDUNDS1 ZGHQMTH1	POUND31 \$GROWTH1	INIMUN91	Privid S I 1904 D S I 1904 D S I	PUUNDS1 \$640MTH1		CURIC TECHESI SCROWTHI	CUHIC INCHESI XGROWTHI	CHRIC INCHESI ZGHOWIHI	CIALC TUCHESI	163N2N1 21812 163N2N1 21812 141N0423	CUPIC 746451 2640~THI	CUMIC TUCHESI 14740972 14740972	CHRIC TYCHESI ZGROWTHI
1 7 E 4 	SUHCHWPACT. DOMESTIC	SURCOMPACI, FORFIGN	COMPACT, DOVESTIC	COMPACT, FOREIGN	410-512t	FULL STZE	LITYDAY, NOM STIC	LATURY. FARFIGA	GINE DISPLACEMENTS	SUHCOMPACT, NUMESTIC	SUMEOMPACT, FIDETCH	CAMPACT, DUNESTIC	COMPACT, FORLIGS	410-512F	FULL 512F	LUTURY, DIMESTIC	LUXINGE, FORESGN

ASSUMPTIONS FOR EXOCENTUS VARIABLES 1975 + 2000

5:

-
-
ч.
-
-
-
u
-
-
α.
-
-
Ξ.
~
~
-
-
-
_
-
- 0-
-
~
-
-
-
-
<
-

•

..--

1 J 7	1	1975	1976	1977	1978	1979	1980
ILFRACTION WITH AUTOMA	FIC THANSHISSINHI I					8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	•
21 51 SilinCrimPACT, DOMEST 413	IC FRACTION	0 • 590 2 • 4 8	0.583 -1.19	0,578 -0,86	0,575 •0,52	0.570 -0.87	0,560 -1,75
5+ Al Suncampact, FUHEIG 71	H FRACTICHI 2GROWTH	0°0°0°	0,576 0,0	0,576 0,0	0*0 0*0	0,576 0,0	0,570
NI 91 CUMPACT, DUMESTIC At	FRACTIONI SGRDATH	0,915 2,40	11.0-	0°911 10°0	0 000 • 0 • 22	0.830	0 8 8 9 9 1 9 8 9 9 1 9 9 9
11 21 COMPACT, FUREIGN 31	FRACTIONI Scriven	0°0	0.798	0,798 0,0	0 • 7 9 4 0 • 0	0,798	0,794 0,0
al Hu-size 61 Hu-size	FRACTIGNI XGPUVTHI	0,995 1,0A	0*0 56420	0°05 0°0	0 * 0 0 * 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9°2°9-
71 N1 PULL 512E 91	FRACFIONI SGROWINI	20°0-	0°0 0°0	0 * 0 0 * 0	0°0 0°0	01°0+ 665°0	0,497
01 11 נטצוואי, החייר 11C כו	H PACTIONI XGPOUTHI	0,985 0,985	0 * 0 0 * 0	0,965 0,0	0 • 0 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0°0 0°0	0°0 0°0
11 41 LUNRY, FOREIGN	5 x a C T 100 1 2 5 8 0 4 1 H I	0,554 0,0	2000 200	0 * 8 8 4 0 * 0	0°659 0°0	0 • 0 0 • 0	0,080
DIFRICTION WITH OVERDR	Ivea						
HI SUNCOMPACT, DUVEST	IC FRACTIONI XGROWTHI	0 ° 0	0 * 0	0 ° 0	0°0	0°0	0*0
11 21 SUNCOMPACT, FURLIG 31	1 540 F 1441 2540 M 141	0*0	0*0	0*0	6:0	0 ° 0	0°0
01 (01-24, 01-211)	F RACTTON F 26404TH	0*0	0 * 0	0 * 0	0°0	0°0	0 * 0
ZI MI CUMPACT, FURFIGN	+ HACTION \$680414	0°0	0 0	0*0	0 ° 0	0 ° 0	0.0
11 410-512F	FRACTICHI XGRUMTHI	0*0	0°u	0 ° 0	0 * 0	0 * 0	0.0
11 FULL SIZE	FHACTION SCRUAT	0 • 0	0*0	3*0	0*0	0.0	0*0
11 LUXURY, CHURSTIC	FH2CT1071 264042	0 ° 0	0 * 0	a.o	0*0	6 ° J	0'0
01 LUXHRY, FURFIGN 11	FRACTIONI SCREWTN-1	0°U	0.0	0°0 .	. 0*0	0.0	0.0

いいではないない、この、この、このないないない、 いたいない、 ないない、ないないない、 ないないない、 し、ない、ない、ない、ない、ない、ない、

ASSUMPTIONS FOR EXAGENDIS VARIANEES 1975 - 2000

TABLE 2.06 AUTO CHARACTERISTICS + CONTINUED

1 T E N		1.1.1	2061				905 905
RACITIN WITH AUTOMATIC TRI	NSMISSION -	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5					
9114COMP4CT, NUNESTIC	FRACTION XGRUMTHI	0,550 -1,79	0°0 0°0	0°520	0°0 0\$\$0	0°270	0,550
SUBCOMPACT. FUNEIGO	FRACTION	0,576 0,0	0+576 0+0	0,576 0,0	0,576 0,5	0 + 57 + 0 + 0	0 = 5 7 (0 = 0
COMPACT, DOMESTIC	FRACTION 26HOWTH1	0, FOO - 4, 76	0°80 0°0	0 ° 6 N 0 0 ° 0	0°400 0°400	0°0°0 0°0	0'0 0'0
COMPACT, FURETGN	FRACTION SCROWINI	0,790 0,0	0,790	0,744	0,790	0 • 7 9 A 0 • U	0 * 0 0 * 0
M10-512E	FRAC TOMP	0,990 +3,20	0.00	0 * 0 0 * 0	0 * 0 0 * 0	0 * 0 0 * 0	0°0 66°0
FULL 317E	FRACTIONI SGRUMTHI	02°0- 502°0-	0°0 5042	0°0 0°0	0 * 0 5 0 * 0	0 * 0 0 * 0	.0*0 0
Lווגוומא. ויחשבקדוכ	FRACTINNI 26RUMTHI	0°0 0°0	0°0 592 0	0°0 0°0	0°0 0°0	0 * 0 5 * 0	0.0
נטיויאי, למאנולט	FRAETCONF SUPPORTHI	0,854 0,0	0,0 0,0	0 ° 6 8 8 8	0°0 0°0	0 884 0 0 1	0,6840
RACTION WITH OVERDRIVES							
SURCOMPACT, DUMESTIC	FRACTIONI	0°0	0 0	0 * 0	0*0	0*0	0*0
SUACOMPACT, FORFICE	FRACTJON SGROATH	0*0	0*0	0 * 0	0*0	0*0	0 * 0
COMPACT+ DOMESTIC	FRACTION SGRUNTH	0°u	0.0	0*0	0*0	0 * 0	0 ° 0
COMPACT. FOREIGN -	FHACTION F	u*0	0.0	0*0	0 * 0	u*0	0 * 0
410-5126	FHACTION 264001H	0°0	e • 0	0 * 0	0 * 0	0 • 0	0*0
FILL SILL	FRACTIONI 26402114	0.0	0 ° 0	0*0	0 ° 0	0 * 0	0.0
LUXINY, DOMESTIC	1 ND 1 1 D 8 4	0° J	c • 0	0 ° 0	0*0	ت 0	0.0
LU111RY。 FORFIGN	F 4401 1041 20404141	0°0	0°0	0.0	0 0	0 * 0	0*0

A3-38

•

ASSILVPTITING FIN EXUGENDIS VANTARLES 1975 . 2000

いちのにないないないない、 いちをない いちのないちょうかい ちょうか

and the second of the second
č	2
•	1
U	2
s.	۵
÷	
•	-
	2
÷	÷
à	ĸ
÷	u
÷	-
è	
2	ī
è	÷
2	2
5	-
1	۲.
2	-
5	-
2	-
-	-
1	•
1	Ľ
9	2
٢	Ļ
	J
c	ċ
÷	í,

17 (I	1987	8401	1989	1990	1991	661
FRACTION WITH AUTOMAT	IC TRAUSHISSION: 1			0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0		
ארכטיש≠כזי החיינפזוו	C FRACTIONI ZGHOHTHI	0°220	0°0 0°0	0,550 0,0	0,550 0,550	0*220 0*0	0°22
SUHCOMPACT, FOULIGN	FRACTION 364011711	C.576 0.0	r.576 0.0	0,576 0,0	0,576	0.576 0.0	0,570
CUMPACT. DOMESTIC	FHACTION SCROWTHI	0°90 0°90	0°40 0°0	0 * 0 0 0 * 0	004°0	0*00	0.0
CUMPACT. FORFIGN	FRACTION Schintni	0 • 7 9 8 0 • 0	0,794 0,0	0,798	0 • 7 9 8 0 • 0	6 + 7 4 8 0 = 0	0° 131
410-512E	FRACTIONI SGRUMTH1	0 * 0 0 * 0	0°0 066°0	0 * 0 0 * 0	0 * 0 0 * 0	0°0 0°0	0*0
FULL SIZE	FRACTIONI SGRUATHS	0°0 5442	0°0 566°0	0°035	0.05	0 * 0 2 5 0 * 0	0 * 0 0
LUYUNY, DONESTIC	FRACTIONI 2GROATOI	0°435 0°0	0°0 0°0	0,785 7,0	0.085	0,985 0,0	0°0 85°0
רוואוא, והארונים	FRAC11041 14401144	0°0 0°0	0。484 0。0	0 ° B R 4 0 ° 0	0°0 0°0	0°0°0	0°43 0°0
FHACTEON WITH OVENUUT	ve :						
SUNFINEACT. DONESTI	E HACTTONI SGROWTHI	0 0	0°0	0°0	0°0	0*0	0*0
SUBCIMPACT. FUHETCH	1 ACT 100 1	0 ° 0	0 * 0	0*0	0°0	0 * 0	0°0
CUMPACT. NUMESTIC	FHACT2021 26873741	0*0	0*0	0°0	e*0	0*0	0°0
CUMPACT, FURFICH	F P 4 C 1 1 11 11 1 7 5 4 U 4 7 4 1	0*0	0°0	u*0	0'0	0 * 0	0°0
*******	F HACT TON 1 2640.444	0 °0	٥*٥	0*0	0*0	6 *0	¢°0
FULL 512E	F РАСТ 1041 ХС80мт нэ	0*0	u*0	0*0	0°4	0*0	0*0
LUXINAY, DONESTEC	F RACTINUS 2540ATH	0° c	0 * ن	0.0	0° 0	0 ° 4	0°0
LUXURY. FOREICH	F HAC 71041	0.0	0*0	0*0	0.0	0.0	0.0

ASSUMPTIONS FOR FRUCHADIS VARIARLES 1975 - 2300

LE LE LE		1993	2001	1995	9661	1001	1001
IFRACTION WITH AUTOHATIC T	RANSHISSIONI I						7 8 8 8 8 8 8 8 8
SURCOMPACT, DUMESTIC	FRACTION 1 1GROWTHI	0°0 0°0	0°250	0°0 0°0	0°250	0,550 0,0	0°0 0°0
1 SUHCOMPACT, FURETGN	FRACTIONI TGG()HTHI	0 \$76 0 0	3,576 0,0	0,576	0,576 0,0	0 * 576 0 + 0	0,570
COMPACT, DOMESIIC	FRACTION SCHOWTHI	0 ° 8 0 0 0 • 0	0°00.	0°800 0°0	0 0 0 0	0°¥00 0°0	0,305
I CHMPACT, FUREIGN	FRACTION 25ROWTH1	0,798	0,798 0,0	0,798 0,0	0,798 0,0	0,7%8	0,790
HD-512F	FRACTIONI SGRUMTHI	0 ° 0 0 ° 0	0°0 0°0	0 * 0 0 * 0	0°400	0.00	0,996
FILL SIZE	5 PAC 5 1 (11) 2 6 R() 11 11	0°0 5°02	0°0 0°0	0°02 0°0	0°0 0°0	0,9%5 0,0	0°0 0°0
I LUXURY, DOMESTIC	rracisoni Segumtui	0,985 0,0	0°05 0°0	0,985 0,0	0,985 0,0	0.05	0 * 0 0 * 0
I LUTHIPY, FORESUN	FRACTIONI TGROWIN	0 ° 0 ° 0	0°0°0	0°0 0°0	0,034 0,0	. 0°0 088°0	0,684 0,0
I IFRACTION MITH OVERDHIVEI							
I SUNCOMPACT, PUMESTIC	F PACTION 2640×141	0*0	0 * 0	0 * 0	0 * 0	0.0	0*0
I SUNCOMPACT, FUNFIGN	FPACTIONI 2640HTMI -	0°0	0 0	0 0	0.0	0 ° 0	0*0
1 COMPACT. DOMLSTIC	FKACTIONI 25R0.41NI	0°0	0°4	0*0	0 * 0	0*0	0 * 0
I CONPACT, FORFIGN	FRACTIONI SGRUMTHI	0*0	0 0	0 ° 0	0 * 0	0 * 0	0.0
410-512E	FHACTIO ⁴¹ 2640n1HT	0°0	0 0	0°0	0°0	0.0	0.0
1 FULL STRE	FRACTINKI Zgrenthi	0°0	0°0	0*0	0*0	0*0	0°0
ו נטינואיע, מטאנ 110 ה	FRACTIONI Strouth	¢*0	0*0	0°0	0 ° 0	0°0	0°0
I LIGHT, FORFIGN	FRACTIONI TERACTIONI	0 ° 0	0*0	0.0	0.0	0.0	0*0

A3-40

言語

いないでいたかのことであったい

WEND & NEW

and the sure of th

ASSUMPTIONS FOR EXORENDIS VARIABLES 1975 - 2000

a part of the state

TAILE 2,06 AIITO CHARACTEMISTICS - CONTINUED

3164		A > A]	
ACTION WITH AUTOMATIC TR	I I NO I SO I NOR		
SUBCOMPACT, DOMESTIC	FPACTIONI SCRONTHI	0*0 0*0	6 * 2 2 C
SURCOMPACT, FONFICN	FRACTIONI 269047N1	0,575 0,0	0,57e 6,0
COMPACT, DOWESTIC	F # # C T T U V 1 2 G F () M T H 1	0°0 0°0	0 2 0
CrupACT, \$ngEIGN	FRACTIONI 25RUNTHI	0,790	0°0 761°0
3715-014	FRACTIONI XSRONTHI	0 * 0 0 * 0	0000
FULL 517F	FRACTION 26RUNTH	0°0 5050	0°0 0°0
LUXINY, DOMESTIC	FHACTIONI ZGRONTNI	0,085 0,0	0 ° 0 ° 0
LUEUNY, FORFIGN	FRACTION XGROWTHI	0, AA4 0, C	0,684
1341904JAG HIIM NGLIJT			
SURCOMPACT, DUMLSTIC	FRACTIONI SGROWTHI	ن * ٥	0 0
SUNCOMPACT, FONEIGN	FRACTION1 2580mTH1	0°C	0.0
COMPACT, DUMESTIC	FRACTIONI SGEUNTHI	0 * 0	0 0
CIMPACT, FOGETCH	F PAC 11021 26405-191	u*0	0 0
H10=5121	FRACTIONI 26MGMTHI	0.0	0*0
ניינר 1125	FRACTION I XGROWTH	0.0	0°0
Luzury, Drugstic	FRACTIONI 26RUHTM	0*0	¢*u
LINIUY, PORFILN	FRACTIONI	0 0	0*0

ASSUMPTITINS FOR EXPEENDIS VANJARES 1975 - 2000

the 22 + marine Anthree Arts

TARLE 2.07 AUTO CMARACTERISTICS

$ \begin{array}{l l l l l l l l l l l l l l l l l l l $.1MF 1 1 1 1 1 M		1975	1976	1979	1476	1010	1980
SUBCOMPACT, DOM 311C FMACTION 0.443 0.445 <	IIFHACTION MITH & CYLINDERST	· · · · · · · · · · · · · · · · · · ·						
SubClorence: Fact (10) C, 00 C, 00 <thc, 00<="" th=""> C, 00 C, 00</thc,>	31 SURCEPTPACT, DUM. STIC 41	FHACTIONI SGRUMTHI	0.62A -20.17	0 • 6 4 1 2 • 0 7	0.456	0.665	0.690 3.76	0,720 #,35
CUMPACT, NUMERIC PARCTING PARCTING	51 61 SUACOMPACT, FUREIGN 71	FRACTIONI SGROWTHI	969°0 968°0	0°0 0°0	0,078 0,0	0.0	0 • 0 0 • 0	0.0
CUMPACI, FORLIG FACTION SCRUMAN 1,000 0,0	R) 91 CUMPAET, NUMESTIC 105	6 RACT5(12) 26402141	0 0	u° u	500°0	0,010 107,00	0 + 0 4 0 3 0 0 + C 0	0,070 75,00
HID-STIT FACTION SCONTH 0.0	11 121 [UHPACI, FUHEIGA 131	F MACTSONS 26804141	0 ° 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 + 000 0 + 0	1 • 0 0 0 0 • 0	0 ° 0 0 0	1.000	1, aco 0, 0
Full Balt Balt Balt $0,0$ 0	141 151 m10=512f 161	FRACTION XGENATH	0°0	0°0	0 * 0	0 * 0	0.0	0°0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	171 161 FHLL 312F 191	F R & C T T D M I 2 G R UM T H I	0 0	0°0	0 0	0 0	0 * 0	0°0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	201 211 LUXHPY, NOWESTIC 221	FPACT10101 26FOW101	0.0	0 * 0	0 ° 0	0 * 0	0 * 0	0 ° 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	יטן נטאיאיאיאיאיאיאיאיאיאיאיאיאיאיאיאיאיאיאי	5 8 AC T 7 DN 1 2 6 8 U 3 1 M 1	0,213 -0,02	0,213	0,213	0,215 0,0	n 213 0,0	0,213
3 UNCLUMPCET. DIMERTIC FRACTION 0.273 0.253 0.259 0.200 <th0.200< th=""> 0.200 <th0< td=""><td>261 271f RACTION WITH & CYLINDERSO</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th0<></th0.200<>	261 271f RACTION WITH & CYLINDERSO							
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	281 291 31 ³ 4C14PrCT, 0114F3TJC 301	FRACT1041 2040mTH1	0,273 53,73	0,263 - 5,66	0,253 - 5,50	0,250	0,24F •0,80	0,244
MIL ChivPaCT, DiveSTC FRACTION 0.578 0.581 0.620 0.0100 0.01000 0.01000 0.01000 0.01000 0.010000 0.0100000000 $0.010000000000000000000000000000000000$	311 521 SUACOMPACT, FORESGA 311	FRACTIONI 2640-141	0,016 0,21	0.016 0.0	0,016 0,0	0,016 0,1	0.016	0,016 0,0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	lat 351 CAMPACT, NAMEST [*] C 361	FRACTSON SGNDHTHI	0,576 1,32	0,502 1,04	0.545	0,583 0,0	0,620 6,35	0, h r 0 0, 4 5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	svi Smi compact, koreign Sti	FRACTION Innerit	د 0 ° 0	0°0	٥° ٢	0 * 0	0 * 0	ა*ღ
11 FULL S1/F Ридстарн 0,005 0,006 0,007 0,008 0,00 0,0 10,07 0,008 0,07 0,008 0,00 0,1 20,000 10,07 0,01 14,29 12,5 0,1 14,07 0,0 0,0 10,07 0,0 14,29 12,5 0,1 14,07 0,0	211 517-512E 471	FRACTIONI 36.401/141	0,052 • 49,87	0°0 0	0°U	۰.0	0,060	0,150
ит циниях почезтис в вклитии 0.0 0.0 0.0 0.0 0.0 0.0 алт самитии 2.0.0 0.0 0.0 алт циличах влаетый балонти 0.762 0.762 0.762 0.762 0.76 алт силист влаетый 0.762 0.762 0.762 0.762 0.76 алт силист самити 0.760 0.0 0.0 0.0 0.0 0.0	ast Futt Size usi Futt Size	14120112011 1412012 26402	0,005 -1,65	0°000 20°00	0.007 16.67	0.007 0.0	0,008	0,009
001 501 LUIZUJAV, FUJEFILU FRAETIUNI 0.762 0.762 0.762 0.762 0.76 511 LUIZUJAV, FUJEFILU EGEPUTIU -0.00 0.0 0.0 0.0 0.0 0.0	uri Littusy, numbjic 441	1 H L L L L L L L L L L L L L L L L L L	c ° D	¢ * 0	0°0	e ° 0	0*0	0*0
	ual Sai Luxuav, FORFIGU Sti	FRACT30NI SCHPHTHI	0°00 292°0	0, 767 0, 0	0,762 0,0	0,762 0.0	0,762	0,762

ASSIMPTIONS FOR EXOGENOUS VARIABLES 1975 - 2000

in He

231 861 41.

TABLE 2.07 AUTO CHARACTERISTICS - CONTINUED

						2		
Ľ	е I Т Е м		1981	1982	1985	1984	1985	1986
=;	FRACTION WITH & CYLINDERSI							
5.5.5	SUACOMPACT. DOMESTIC	F R 4 C 1 UNI 2 5 6 0 1 1 1	0,750 4,17	0,750	0,750	0,750 0,1	0,750 0,0	0.750
~ ~ ~	SLHCIMPACT, FUHEICH	PRACT1011 2690-111	0°0 0°0	0,00	0,088	0,068	0 * 0 8 8 0 * 0	0°0 0°0
	COMPACT, DOMESTIC	FRACTIONI 26HOWTHI	0,100 42,75	0,100 0,0	0.100	0,100 0,0	0,100	0,100
222	COMPACT, FOREIGN	FRACTIONI 26H0VTHI	1,000 0,0	1,000	1 • 100 0 • 0	1 + 000 0 + 0	1,000	1,000
3.5.9	410-912E	FRACTIONI TGAUMINI	0°0	0°0	0*0	0 * 0	0 * 0	0°0
	FULL 312E	FRACTIONI 36RUMINI	0 * 0	0 * 0	0,0	0 * 0	0 * 0	0 ⁴ U
222	LIJXIJRY. DOWFATIC	FRACT JONI XGHUMTM3	0°0	0 * 0	0 * 0	0*0	0 * 0	° ° 0
222	LIIKURY, FORFIGN	FRACTIONI XGMU-THI	0,213	0,215	0,213 0,0	0,213	0,215 0,0	0,213
22	FRACTION AITH & CYLINDENSI							
62	SUBCOMPACT, DUMESTIC	FRACTIONI SCRUMINI	0,240 -1,64	0,240 n,0	. 0,240 0,0	0,240 0,0	0,240 0,0	0,240
123	SURCOMPACT, FOREIGN	F HACT10H1 \$680MTH1	0.016	0.016 0.0	0,016 0,0	0.0 0.0	0°0 0°U	0.016
255	COMPACI, DOWI STIC	FRACT1041 264944141	0,700 6,05	0°10 0°0	0,700 0,0	0,700	0 * 0 0	0.700
	COMPACT, FORFIGIA	FPACTIONI 2680MTHI	0.0	0*0	0*0	U * O	0 * 0	0.0
1123	MIN-512E	FRACT1091 26HDMTH1	0,250 56,25	0,250 0, <i>1</i> 0	0°50 0°0	0*0 0*0	0*0 0*0	0°0
123	FULL STAL	FRACTEON LENDATH	0,010	0*010 0°C	0, n] 0 0, 0	0,010	6, 710 0.0	0 ° 0 1 0 0 ° 0
5 2 3	Linnar, Dovestic	FAACTTON:	0.0	0 * 0	0*0	0° د	0 * 0	0°0
505	Lurury, Forelsh	FHACTIONI TGHUITHI	0,762	0,762 0,0	0,762 0,0	0,7+2 0,0	0,752 0.0	1:4762 0:0

ASSUMPTITING FUR FRUGLAUNS VARTARLES 1975 - 2000

,

5 10 J	
1)
100	2
	2
0.1	
-	
040	e
•	د _
A 11.0	
ſ	
-	2

		TAPLE	2.07 411. 2	HAPPETER IST	ICS - CONTIN	JŁ D		
119	. 1 1 6		1991	1988	6491	0001	1661	2661
1=	FMAC 10N N11H & CYLINDERS	· · · · ·						
~~ =	SUNCOMPACT, NOVESTIC	F#AC11041 2520×104	0,750 0,0	0,150	0,750 0,0	6.759 0.0	0,750 0,0	0°0,0
	SURCHWACT, FUREIGN	FRACTIONI 26PUETH	0 * 0 0 * 0	0.09	0,088	0, 984 0, 5	0 * 0 # # 0 * 0	0.0
4 0 0	CO414C:. 004E3TIC	FRACTION LANUMEN	0°100 0°0	0,100 0,0	0°100 0°0	0 • 1 0 0 0 • 0	0 • 1 0 0 0 • 0	0°100 0°0
	COMPACI, FORFIGN	FRACTIONI SCROWTHI	1,000 0,0	1 000 000	1 • 0 0 0 0 • 0	1.000 0.0	1 • 000 6 • 0	1,000
151	~10+512f	1 5580×141	0 ° 0	0 * 0	0 * 0	0°0	6°0	0 0
171	FULL 5176	FRACTIONE SGF0ATHI	0°0	0 * 0	0.0	0 ° 0	0*0	0.0
222	LIIZISRY. DOMESTIC	FRACTION Scremethi	0 ° 0	0 * 0	0 * 0	0 * 0	0.0	0.0
222	MUTURY FUREICH	FRACTIONI 2GRUATH	0,213	0,213	0,713 0,0	0,213 0,0	0,215	0.13
22	FRACTION WITH & CYLINDERST							
502	STHCOMPALI. DUPESTIC	FPACTION SCRIDTIN	0,240	0°5°0 0°50	0°0 0°0	0,240 0,0	0,240	0,200 0,0
222	SUNCHUPACT, FUSSEN	FRACTIONI Icrowini Icrowini	0.016 0.0	0,016 0,0	0.016	0.010 0.0	0,016 0,0	0.016
255	CHUPACT. ONVESTIC	FRACTTON TGROATH	0°2°0	0°100 0°0	0°700 0°0	0,700 0,0	0,700 0,0	5.700 0.0
141	COMPACT. FORFISM	FW&CT1041 2640ath1	¢°0	0°0	0 * 0	0°0	0 0	0 * 0
	410-3146	14101128	0°0	0°520	0,250 0,0	0°50 0°50	0, 250 0,0	0°520 0°0
2 2 2	FILL SIFF	FRACTENNI TGHOATHE	0 ° U I O 0 ° O	0°0 0°0	0.010 0.0	0.010 0.0	0,010 0,0	0°0 0°0
2 2 2	LUNUT. DAMESTIC	F#4CT1041 26404141	0.0	с°0	٥°٥	0.0	0 * 0	0°0
5.5	LIXURY, FORESCH	FPACTIONI 16801141	0,162 0,0	0,762 0,0	0,752 0,0	9,762 0,0	0°0	0,762

ASSUMPTIENS FOR ETTERNETS VANTANLES 1975 - 2000

1 1

FARLE 2.07 AUTO CHANACTERISTICS - CONTINUED

1146	1 1 1		1993	0001	1995	9661	1991	1991
Ē	RACTION WITH & CYLINDERSI	1 1 1 1 1 1 1 1 1 1 1 1 1 1						
7 - J	SURCHWPACT, DUMESTIC	FPACTIONI TGRUATH	0,750 0,0	0,750 0,0	0.750 0.0	0,750 C,0	0,750 0,0	0°120
	SURCUMPACT. FUMEICN	FHAC FICKI TGRUNFH	0 ° 4 B 0 0 ° 0	0 * 0 e	0.958 0.0	0,934 0,0	0,988 0,0	0°0 0°0
	COMPACT, DOMESTIC	HINDRUS HINDRUS	0,100	0.100 0.0	0.100	0.100 0.0	0,100 0,0	0,100 0,0
222	COMPACT. FUREICN	FRACTION ISONTHI	1,000 0,0	1.000 0.0	1.000	1.000	1.000	1.000
1	ы10-512E	PRACTION 25HUMTHI	0°0	0° ک	0°0	0°0	0 * 0	0 0
	FULL SIZE	FRACTION TGHUMINI	6°0	0 0	0*0	0.0	0 0	0 0
222	LURUMY, DUMESTIC	F MAC F 1041 26404741	ų° 0	0°0	0°0	0 ° 0	0 * 0	0 ° 0
5252	UITUHY FORFICE	THACTION SCHOOTHI	0,213	0°0 13°0	0.213	0,215	0,213	0,213
2016	RACTION WITH & CYLINDERSE							
102	SURCINUACT, DUNESTIC	1 HAC 11041 26H0H1H1	0 * 0 0 * 0	0,280 0,0	0,240	0.240	0,20	0,240
323	SUNCOVERCE, FUNEICN	FRACTTONI 2640athi	0 ° 0 1 & 0 • 0	0,016 7,0	0.016	0°0 0°0	0,016 0,0	0.016
341	CC'1PAC1. DOMESTIC	FRACTIONI TGMUTHI	0,709 0,0	0,700 0,0	0,700	0°100 0°0	0,700 0,0	0,700
125	COMPACT, FOURTON	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0° 9	0 0	0°0	0 ° 0	0 * 0	0 * 0
- 1 3 - 1 3	410-512E	FRACTIONI 36RONTHI	0,250 0,0	0°0 0°0	0°0 0°0	0,250 0,0	0°0 0°0	0*0 0*0
	FULL SIZE	FRACTINU 254014741	0.010 0.0	0.010 0.0	0.010	0,010 0,0	0*010 0*0	0 * 0 0 * 0
1 2 3 3	LUTURY, POWESTIC	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 ° 0	0 * 0	0°0	u° 0	0 ° 0	0*0
123	"Jetter, Foat for	1424244 14240425	0,762 0,0	0°4 292°0	0,762 0.0	0,762 0,0	0,02	0,762

ASSUMPTIONS FOR EXACENDIS VAPIARES 1975 - 2000

1

TAHLE 2,07 2010 CHAPACTLHISTICS - CONTINUED

Pacifik All a CYLINDERS)) ,,) , , , , ,,		
SURCHART, DUMESTIC	FRACT 10H1 2GRUMTH1	0,750 0,0	0°0 0°0
SU0.D**P≜C1, FORFIGM	FRACTTON TGRONTH	0°0	0 * 0 0 * 0
COMPACT, NO4ESTIC	FRACTION I	r, 100 n, 0	0 + 0 0 0 + 0
COMPACT, FURFIGN	1 H 4 C 1 1 0 M 1	1.000	1.000
MIC-512F	FH3CTIOUT TGROWTHI	0 0	0 * 0
FULL SIZE	FRACTION I	0 ° 0	0 * 0
LIIXURY, DUNESTEC	f 2 4 C 1 [C 1 4 2 G 4 0 h T H]	0.0	0 0
LUXINY, FOREICN	Faac Trine Londet	0,215	0°0 0°0
ISBAULTIN & HILM ROLLDE.			
SUNCIMPACT. DOMESTIC	FRACTION:	0,240 0,0	0°0 0°0
SUBCAMPACT. FURTCN	F RAC 1 1 11 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0,016 0,0	0.010
CIJIIHACT. BOUESTIC	FHACTIONI TGRUATHI	0,700	0,700
COMPACT, KUREICN	1 MEMURDE 1 NULL DERS	0 * 0	с*о
1218-011	5 PACT \$1914 2080-4 PH	0°52°0	0°50
FILL 312E	FRACTTONI THTUNITHI	0,010 0,0	. 0.010
LUXINAT, POMLSTAC	F PAC S SUNTHI TGRUMTHI	0.0	0 ° 0
LITZIER, FOREIGN	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0,762 0,0	0,762

ASSIMPTIONS FOR EXAMPLOUS VARIABLES 1975 - 2000

4

.

U U
-
-
S
-
ш.
2
Π.
Ξ.
2
₹.
Ŧ
ü
C
-
2
-1
-
õ
۰.
~
L.
ور ا

.

3 ta 1	1 1 6 14	1975	1976	1977	1978	1979	0461
HICLLY DRIVING . UR	144 HILES / TOTAL 1	0,553 0,553	0,558	0,563	0,565	0,573	0,5/7
19		5.5.ª :	nr.* n	07 * 0	A 4 4 A	U 11 ⁶ 0	•••
SIF XPOMENT: AL DECA	HATE USED CAR PRICES!						
71 SUBCOMPACT		0,211	112.0	0.211	0,211	0.211	0.211
	I HINDHGI	10.0-	0.0	0 * 0	0 * 0	0 • 0	0.0
1 COMPACT		0.206	0.206	0,206	0,200	0.236	0,206
=	2680H1H1	-0.13	0.0	0*0	0.0	0.0	0 0
51 MID-S726		0.217	0.217	0.217	0,217	0.217	0,217
12	1 H L C B C B C B C B C B C B C B C B C B C	0,22	0 0	0*0	0.0	0.0	0*0
1 PILL SIZE		0.243	0 . 2 4 3	0,243	0,243	0.243	£ 02° j
11	2 CRONTH I	0.19	u * 0	0.0	0.0	0.0	0 * 0
A LUXUAY		0,208	0.258	0.268	0,268	0,268	0,268
101	2GR0HENI	-0.07	0.0	0.0	0.0	0 * 0	0.0

A3-47

/

ASSHMPTIONS FOR EXOCENTIS VARIANLES 1975 - 2000

CONT SNUE
ARACTERISTICS
Đ
AUTO
2°08
TARLE

LINE	1 7 E M	1961	1982	1983	1984	1985	9861
11C117 DH1V1		0,582	0.585	0.590	0,595 0,595	0,599	0.603
19							
SIFEPUNENT	L DELAY VALES USED CAN FALLED	0,211 0,0	0,211 0,0	0,211 0,0	0,211 0,0	0 « 211 0 • 0	0,211
91 101 COMPACT 111	XGROWTHI	0,205 . 0,0	0,206 0,0	0,206 0,0	0,206 0,0	0 = 20 b 0 = fi	0,206 0,0
121 MTD-S12E	1 1 1 1 1 1 1 1	0,217 0,0	2,217 0,0	0,217 0,0	0,217 0,0	0.217	0,217
171 161 FULL 317	1 2690#1H	0,245 0,0	0,233 0.6	0,243	0°543 0°0	0 * 5 # 2 - 5 # 2	0,243
101 LUXUHY 201 LUXUHY	L H L H O H O H	0,250 0,5	0,268 0,0	n _e 268 0 e0	0,268 0,0	0,268 0,0	0,268 0,0

ASSUMPTIONS FUR EXOCENDIS VARIABLES 1975 - 2040

.

	-
- 2	_
- 3	-
	-
	=
	2
- 2	
- 4	-
	•••
	-
- 4	-
	~
	in the
- 4	-
	_
	-
- 4	-
	-
	_
- 1	CZ.
- 4	۰.
	-
	L
	÷
1	Cr.
	-
	-
	÷
	-
	-
	-
	_
	_
	-
	-
	-
	с,
	e
	-
	•
	۰.
	-
	~
	-
	-
1	-

311		1901	0401	6461	0 5 7 1	1661	1992
11C117 DM1V1NG. UR 21 31	нии ицез / тотас 1 Кан ицез / тотас 1 Ссилии -	0, 607 0, 607	0.49	0, 61 8 0, 6 8	0 6 0 6 1 5	0 6 2 1 0 6 6 9	0 6 2 9 0 4 8
41 51EXPONENTIAL DECA	Y MATE, USED CAR PRICES!						
21 SUNCOMPACT	KGROWTH	0.211	0.215	0.0	0.211	0*0	0,211
91 01 COMPACT 11	141404141	0°508	0.200	0,206	0,206	0 + 2 C fr 0 + 0	0°509
21 м[П=312f ы м[П=312f	2690MTH1	0.0	C,217 C,0	0,217	0,217 0,0	0 * 0 * 0	0.217
58 51 FULL 512E 71	\$6RUHTH	0 ° 2 4 \$	0,223 0,0	0 • 2 9 3 0 • 0	0,265	0 - 2 4 3 0 - 0	0 • 7 4 3 0 • 6
AI LUXURY DI		0,268	0,26A 0,0	0°209 0°0	0,268 0,0	0,265 0,0	0,268

ASSIMPTIONS FOR EXUGENOUS VARIANLES 1975 . 2000

A STATE OF A

art the stand and

LINE	1 1 E M	1001	2661	5661	9651	1991	1998
IICITY DRIVING,	URNAN NILES / TOTAL 1 XCPUWTH	0.48	0,630 0,48	0.633 0.48	0,635 0,32	0 638 0.47	0,640
31 41 SIEXPONENTIAL DE	CAV RAFE, USED CAR FRICES			•			
61 71 SURCOMPACT 81	 1 хбилити	0,211 0,0	0,211 0,0	0,211 0,0	0,211	0,211 0,0	0, 711 0, 0
91 101 COMPACT 111	1 H L M M H H L M M H H L M M H H L M M H H L M M H H L M M H H L M M H H L M M H H L M M H H H M M H H H M M H	0,206 0,0	0,206 0,0	0*500 0*0	0,206 0,0	0,206	0°500
121 131 410+517E 141	[H1MUH9X	0.217	0,217	0.217 0.0	0.0	0,217 0,0	0,217
171 FULL SIZE	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0,243 0,0	0,243 0,0	0,223 0,0	0,243 0,0	0,243 0,0	C + 2 4 3 0 + 0
181 191 LUXURY 201	XGROMTH1	0,26R 0,0	0,26A 0,0	0,268 0,0	0,268 0.0	0,268 0,0	0,268

ASSIMPTIONS FOR EXOCENDIS VARIANLES 1975 - 2000

and and a fight and in the and and

WE WAR EN SAU

and the set when the set of

し、おしてい 二十二 一時代の下

F 2,04 AUTO CHARACTERISTICS - CONTINUED

RE

NE.	I T C M	6661	2000
10117 DH1VING, UP	842 PTLES / TOTAL 25RUWTH	0,47	0 \$ 911
ILEXPONENTIAL DECA	Y HATE, USID CAN PRICES!		
I SUBCOMPACT	2 GHUM1H	0,211	11-2-0
L COMPACT	х склж	0°0 902°0	0°50 0°0
11 410-512E	2GROWTH	0,217	0 0 0
I FULL SIZE	2640MTH1	0,243 0,0	0,2431
1 LUXUPY	ZGHONTH	0,263	0,2681

A3-51

/

The alter all and all all 11.5 e praise a manual and a little 1 5 1 30 30 1.

ASSUMPTIONS FOR EXAGENDUS VARIARLES 1975 - 2000

Į

1111	1 L L L L L L L L L L L L L L L L L L L		1975	1976	11917	1978	1979	198
011	DWESTIC CLASS HASE PRICE / AV	ERAGE I	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		0 9 0 0
~~~	SURCOMPACT	RATIO 26RUNTHI	0.749 0.01	0 = 7 4 4 0 = 0	0,744 0,0	0 - 7 4 4 0 - 0	0,744 0,0	0 • 7
595	CO *PACT	1 RA1101 XGRUWTH1	0°792 -0°04	0 • 7 9 2 0 • 0	0,792	0,792	0 * 7 9 2 0 * 0	0 * 0
8 6 6	M10-912E	RATEG SGROHTH	0°017 0°00	0.917 0.0	0,917 0,0	0,917 0,0	0.917	6°0 0
1215	FULL SIZE	RATICI YGROWTHI	1 0 3 0 0 0 0 4	1 0 30 0 0 U	1 ° 0 3 0 0 ° 0	1 • 0 3 0 0 • 0	1 ¢ 0 3 0 0 • 0	0.0
3.5.4	LUXURY	RATEO 26R02721	\$ • 6 6 9 0 • 0 2	1,669 0,0	1,669 0,0	1 • 6 6 9 0 • N	1,669 0,0	1.65 0.0
40	IIM, CLASS MAX, IIPTI(INS PRICE	AVEHAGE						
	SUBCUMPACT	RATINI SGRUWTHI	0,900 -3,27	0°0 0°0	0° 400 0° 400	0*0	0400	0000
222	C UMPAC 1	RAT101 2680/111	0°950 -1°31	0°0 0°0	0°0 0°0	0°00 0°0	0°0 0°0	50°0
241	M10=512F	RATIOI 2GRUMTHI	0,990 0,030	0°440 0°50	0°0 0°0	0°0 0°0	0 * 0 0 * 0	0 0 0
	311FT 215E	HATTOT SCHOWTHU	1,020 520	1,025 0,0	1 • n 2 0 0 • n	1 • n 2 0 0 • 0	1 • 0 2 0 0 • 0	1,00 0,0
255	Luxury	1 101141 260001111	1.170 6.80	\$ • 1 7 0 0 • C	1,170 0,0	1.170	1 • 1 70 0 • 0	1 • 1 0 • 0



ASSUMPTIONS FOR EXAGENDUS VARIARLES 1975 - 2000

.

ł

and the set of the set with a state of the set of the s

and the set the man and

· B. - Ber M. · · · Var. M. · S.

and the second second second and the second s

-----

LTMF		7 π Ξ Ξ	1981	2491	1983	1984	1985	1986
	1045511C CLASS	HASE PRICE / AVERAGE 1	U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 9 9 9 9 9 9
	SURCOMPACT	201101 26704141	0,744	0,740 0,0	0 • 7 # # ., • 0	0 • 7 ¤ 4 0 • 0	0 • 7 4 9 0 • 0	0,748
	C DINPAC T	26RUM1H1	0,792	0,792 0,0	0,792 0,6	0,792 0,0	0,792 0,0	0 * 0 0 * 0
	M10-512E	RATICI 2GRUMINI	0.017	0.017	5.917 0.0	0.017	0 0 0 0	0.010
-25	FULL STZE	HINDRUS	1,030	1,050 0,0	1 • 0 5 0 0 • 0	1 • 0 3 0 0 • 0	1 ¢ 0 3 0 0 • 0	1 . C 3 3
2.292	LUXUPY	RATIO XGROWTHI	694° 9°0	1 669 0 0	1,669 0,0	1 • 6 6 9 0 • 0	1,669 0,0	1 • 6 6 9 0 • 0
0161	MM. CLASS MAY.	OPTIONS PRICE / AVERAGES						
	SURCHURCT	. RATJUI 36RUNTHI	0°0 0°0	0°0 0°0	0 * 0 0 * 0	0°40 0°0	0.00	0°0 0°0
222	COMPAC 7	2GROWTHS	0°0 0°0	0°0 0°0	0*0 0*0	0 * 0 0 * 0	0*0 0*0	0*0
182	4.50+312E	RATTCI CRUATHI	00000	0°0 0°0	0°0 066°0	0°0 0°0	0°0°0	0.990 0.90
	FULL SIZE	RATID: 26H0MIJI	1.020	1,720 0,0	1,020 0,6	1, 720 0,0	1.020 0.0	1,020 0,0
23	ГЦХИНУ	8AT105 36804141	1 • 1 7 0 0 • 0	1,270	1,170	0.0	1.170	1,170

1



ASSUMPTIONS FOR EXAGENOUS VARIABLES 1975 - 2000

とない、日本あい、 ちちち うちん こ ちょう と、「「「「ちち」」」をある」

All and a set of the

TARLE 2.09 AUTO CHARACTERISTICS . CONTINUED

•		1991	1985	1 4 6 4	066	1991	2001
UNESTIC CLASS HASI	E PRICE / AVERAUL						
SUACOMPACT	7 10178 26893 H	0 • 7 2 4 0 • 0	Λ,744 Λ,0	0 • 7 4 4 C • 0	0,743 0,0	0,740 0,0	0,78 0,0
CC:wpAC1	RATICI XGHDWTHI	0,192 0,0	0 • 792 0 • 0	0,192	0,792 0,0	6 * 7 9 2 0 * 0	0,79
110-512E	RATI01 26R07-141	0°017 0°0	0 + 917 0 + 0	0,917 0,0	0,017	0,917 0,0	0*0 10*0
FULL SIZE	I U I I V H I VI I V H I VI NO H I V	1,030 0,0 .	1,030 0,0	1 + 0 3 0 0 + 0	1,030 0,0	1 • 0 5 0 0 • 0	1 • 0 3 0 • 0
LIJHIIRY	RATIO 26609711	1 • 669 0 • 0	1 6 6 9 0 , 0	1,453	1,659 0,0	1 ¢ 6 6 9 0 ¢ 0	3 + 6 0 • 0
114 CLASS MAX, NP	TICHS PRICE / AVERAGE!						
SUHCOMPACT	RATIOI SGROWTH	0 ° 0 ° 0 ° 0	0 * 2 0 0 C * 0	0°0	0°0 0°0	0°00 0°0	0 - 0 0 - 0
COMPACT	RATICI SGHUMMIN	0 * 45 0 0 * 0	0°0 0°0	0 * 0 0 * 0	0°420 0°0	0°0 0°0	u°0 \$⊳°0
4170+512E	8 A 7 1 0 1 2 6 4 0 4 1 4 1	0 * 0 0 * 0	0 * 0 0 * 0	0 * 0 0 * 0	0°0 0°0	0°0 0°0	0 * 0 0 * 0
FILL SIZE	THINDHOR .	1, n 20 0 + 0	1 • 0 2 0 0 • 0	1 • 0 2 0 0 • 0	1,020 0,0	1,020 0,n	1.02
LUEDRY	241111 26594741	1,170 0,0	1,170 0,0	1,170	1.170	1,17D 0,0	1.17

-

A3-54

١



ASSUMPTIONS FOR EXOCENDOS VARIABLES 1975 - 2000

_	
-	
•••	
-	
-	
- 67	
-	
_	
-	
α	
-	
-	
-	
- 428	
-	
- 77	
-	
-	
- 1	
-	
_	
-	
_	
_	
_	
_	
-	
- 0	
-	
- 0	
_	
~	
1	
-	
-	
_	
_	

1 1	I	1995	1995	5661	1926	1991	1998
DULESTIC CLASS HASE PHI			8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			
SUNCOMPACT	LATIOI 2GROWINI	0°744	0.744	0,744 0,0	0 744 0,0	0,743 0,0	0°148 0°0
C ONIPAC 1	RATIOI 26P0MTH1	0,192 0,0	0°192 0°0	2,792 6,0	0,7°2 0,0	0,792	0°0 0°0
M10-512E	PATTO: 26404741	0.017	0,917 0,0	0,917	0.017	0+0	0.0
FULL SIZE	рат 101 26р0итні 26р0итні	1,030	1,030 0,0	1,230 0,0	1 ° 0 3 0 0 • 0	1 • 0 5 0 0 • 0	1,030
LUXIIHY	RATIOI SGROWTHI	1 • 669 0 • 0	1 + 6 6 9 0 + 0	1.669 0.0	1,669 0,0	1 • 5 6 9 0 • 0	1 • 6 6 • 0 • 0
DOM. CLASS MAX, DPTTONS	I PRICE / AVERAGE						
SURCOMPACT .	RATIOI 26POWTH1	0°0 0°0	0000	0 * 0	0°0 0°0	0000	0000
C Π ¹⁴ Ρ Δ C T	рат 101 101 та 26 рот н	0°950 0°0	0 * 0 0 * 0	0°420	0°0 0°0	0,950 2,0	0,950 0,3
v10-512E	RATTOI SCRONTHI	0 * 0 0 * 0	0 * 0 0 * 0	0 * 0 0 * 0	0 * 0 0 * 0	0 0 0 0 0 • 0	0°0 0°0
f ULL 5128	RATIOI хброитні	1,020 0,0	1,020 . 0,0	1,020 0,3	1,020 0,0	1,020 0,0	1,02 0,0
LUNINRY	P41101 *CC00/*141	1,170	1 • 1 7 0 0 - 0	1,170	1,170	1,170	1,170



ASSUMPTIONS FOR EXUGENDUS VARIABLES 1975 - 2000

the state of the second of the second s

AUTO CHARACTERISTICS - CONTINUED 0 1 14415

		6661	2000
DUMESTIC CLASS BASE PRIC	€ / лубилсе   € / лубилсе		0 0 0 0
SURCOUPACT	TOLIA TOLIA	0 + 7 4 4 0 + 0	0,746
COMPAC 1	RATIO 26HOnth	0 * 7 9 2 0 * 0	0,792
410-512 ²	PAT101 2620-4145	0.017	0.0
FULL SIZE	RATIU: KGRDWTH	1,030 0,0	1 0 3 ( 2 4 0
Annut	RATSUS 26204711 1	1.669 0.0	1.65
DUM. CLASS WAY. OPTIONS	PRICE / AVERAGEI		
SUBCRAPACT	R. 1101 16R0+1H1	0°400	0 0
COMPACT	84140 26204141	0 4 4 5 0 0 4 8 0	0 * 0 5 6 * 0
M1D=512£	RATINI Zgrovini	0°0 0°0	0 * 0 6 * 0
FULL 312E	441105 2620-1145	1,020 0,0	1 ° 0 5 (
LUXIIGY	801101 26204141	1,170	1,170

A3-56

.



ASSTUTUTIONS FOR FXUGENIUS VARIARLIS 1975 - 2000 TADLE - 2.10 FUEL CONSUMPTION EFFICIENCY FACTORS

LINF	1 1 5 4		1915	1976	1917	1978	1074	0951
11012	TY EFFICIENCY FACTOR: ALL CIA	5563 1 5680h1H1	3.000	6 • 0 0 0 1 0 0 • 0 0	6,500 41.57	11.00.1	12.000	15,000
	SUNCRIMPACT, MONESTIC	141-0402	1.000	2.000	3,000	6,000 31,33	5 ° 0 0 2 5 ° 0 0	600°4
0~2	SUHCOMPACT, FOKLIGN	1 2680×141	0*0	0*0	0 * 3	0°0	<b>0</b> °0	0.0
• • = =	COMPACT. DOMESTIC	10HDH1HH	1.000	2000 200°00	00°°05	4,000 53,33	5.000 25.00	000°22
235	CIMPACT. FUMLIGN	14140401	0*0	0 ° 0	0*0	0.0	9 ° G	0 * 0
595	3715-01m	14140491	1.000	2,000 107,00	3,000 50,00	4,000 33,33	5,000	00°02 50°00
	full size	14140432	1.000	2,000 100,00	3.000	8,000 33,53	\$ 000 25.00	00°02 50°00
222	LITTINY. DIMESTIC	THTHON TH	1.000	2,000	3,000 50,00	4,000 33,55	5,030 25,00	00°02 9°00
222	LUIURY, FURLIGH	141#0493	0*0	0*0	0 * 0	0 0	0 ° 0	0*0
291111	GHAAY EFFICIENCY FACTORE ALL	CLASSES I IGRUMIN	3.000	00°001	8,500 41,67	11,000 29,41	12,000 9,09	13,000 6,33
222	SUBFOMPACT。 DOMESTIC	14140852	1.000	2,000 100,00	\$•000 \$2•00	4,000 13,33	5,000	00°02 20°00
541 541	SUNCOMPACT. FORFICM	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<b>u</b> ° u	<b>0</b> *0	0*0	0 * 0	0 ° 0	0 ° 0
101	נחייף±נז, חהיינגזונ	1 CRONTH	1,000	2000°2	3°00 50°00	8,000 33,35	5,000 25,000	00°22 900°
100	KOMPACT, FOX164	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0	0°0	0.0	0 * 0	0.0	0 ° 0
23 23 23 23	MD-512F	1 HURDADX	1.000	200000	3.000	4,000 15,33	000°52 000°5	00°02 4000
2 1 1 2	FILL 912F	1414652	1.000	000°001	\$ 000 \$ 0,20	8,000 13,33	5°00 25,00	€0°02 50°03
101	Lusuar, Duwestic	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	• • • •	2.000 100,00	3,000 50,00	4,000 35,33	5,000 25,00	6°°08 ≷0°°08
553	LUTURY. # ARF 164	1111111111	0,0	6.0	0.0	0 0	0,0	0*0



		TARLE	2,10 FULL CO	A NDIJAANSNC	FICIENCY FAC	I DRS		
111	1 7 E M		1961	1962	1983	1988	1985	961
52	TY EFFICIENCY FACTORI ALL CL		14,000	15,000 7,14	16.000 6.67	17,000 6,25	18,000 5,86	19,00
	SIMCOMPACT, UN'ESTIC	1	000°4	6,000 0,0	000° <b>°</b>	0°0 0°0	0 0 0 ° 0 0 ° 0	0.0
	Suncowpact, finkligh	11110491	0*0	0.0	0 * 0	0 * 0	0 * 0	0.0
	COMPACT, DOMESTIC	1 H J H D 8 D X	000°9	000	0°0 0°0	4,000 0,0	0°00 0°0	20°0 20°0 20°0
	CUMPACT, FUHEICH	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 * 0	0*0	0.0	0.0	0°0	0°u
502	M10-312F	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000° 0	0 ° 0 0 0 ° 0	0°00 0°0	0 ° 0 ° 0 ° 0	6 • 0 0 0 0 • 0	00°9
	PULL 312F	I HI HOADE	0 ° 0 0 ° 0	0°0 0°0	0000	0 ° 0 0 0 ° 0	0 0 0 ° 0 0 ° 0	00°0 9°0
222	LUXUEY, DOMESTIC	2GPONTH	000°9	0°0 • 0	0°00 0°0	000°4	0°0 0°0	60° 9
	LITURY, FRHEICN	10491	0 * 0	0.0	0 * 0	0 * 0	, 0 ° 0	0.0-
241H	GHMAY EFFICIENCY PACTORS ALL	CLASSIS 1 26F0MTH1	14,000 7,69	15,000	16.010 6.67	17.000	1 A . 000 5 . 8 B	19.00
	SINCHIPACT, NUMESTIC	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000*0 0*0	0°0 •	000°9	0°0 0°0	0 ° 0 0 ° 0	6°0 0°0
	Suntaurals, Fostlan	I H J H J H J H J H J H J H J H J H J H	0*0	u ° 0	0 ° 0	0.0	0.0	0.0
	COMPACT, DOMESTIC	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000°9	0000°9	000° 0°00° 0	000° 0°00 4	0 0 0 0 0 0 0 0 0 0	00° 00° 00°
	CAMPACT, FUREIGN	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	¢*0	0 * 0	0 * 0	0 * 0	0°0	0.0
	410-5122	14169492	0 ° 0 9 ° 0	6,003 0,0	0°0 0°0	0°0 0°0	6.010 0.0	0°0 9
	F14L 512E	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000°0 0°0	\$.00 \$.0	0°0 •	0 ° 0 9 ° 0	6 • 0 0 • 0	0000
8 D C	LIJE1144, DO1153715	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6,00 6,0	6,030 0,0	6,030 6,0	6.00 0.0	0 · 0 0 · 0	00°0 0°0
	Lisolwy, Frigf IGN	14120428	0°U	0.0	0 * 0	0.0	0,0	0.0

25544471045 FIR FROCLANUS VARIABLES 1975 - 2000

ł

ASSUMPTINES FOR EXAGENCIES VANIABIES 1975 - 2000

đ

5
ċ
2
ī
Þ
ž
-
-
5
-
2
1
ţ
50
191
-
2
3
•
•
^
2
AP
-

111	M 4 4 8		1961	1981	6461	0661	1661	2001
122	CITY EFFICIENCY FACTORY ALL CL	3955 1 3650 1 36405111	9 <b>2</b> • 5 9 0 0 0 0 0 0	21,000	22,000	23,000 25,000	24,000 4,15	25,000
	SUACOUPACT. DOMESTIC	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 ° 0 0 ° 0 4	0°0 9	000°9	000°4	0 0 0 ° 0 9	0°0 9
4 7 E	Subcouract, finfich	1040414	0°0	0° <b>6</b>	0.0	0.0	0°0	0 ° 0
	COMPACT. DOM STIC	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 ° 0 9 ° 0	000.0	000°9	6°00 6°0	000°0	0 ° 0 0 * 0
222	COMPACT, FOREIGN	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	¢°0	0°0	0.0	0 * 0	C * O	0.0
235	4/15-01+4	1 1 1 1 1 1	0°0 0°0	0°0 9	000°4	000°4	000°9	0°0° 9
102	+++LL 312F	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 * 0	0 * 0 9 * 0	000°%	000°4 0°0	0 0 0 0 0 • 0	000° <b>*</b>
222	LUSURY, DOWESTIC	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000°4	0 ° 0 ° 4	000°9	000*0	0 4 0 0 9 4 0 9	6.nco 0.0
222	LUNURY, FIRELGN	1414043\$	0 * 0	0°0	0°0	0 * 0	0 0	u° o
222	HIGHMAY EFFICIENCY FACTORS ALL	CLASSES F TGROWTH	42°5 5°50	21,000	22.000	23,000 4,59	29,000 8,35	25,000 4.17
532	SUHCOMPACT, DIMESTIC	1	000°4	00°0 000°9	000°9	0 ° 0 0 ° 0	000*0	000°+
222	3111CA4FAC1. PA4E16N	1 1 1 MT × 0 P 0 X	0°u	0 * 0	0°0	0*0	0.0	0 ° N
125	CIMPACT. BRIESTIC	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000° 0°0	000°4	000°9	0°00 0°0	0°0 0°0	0 ° 0 • 0
	COMPACT, PORTIGH	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0	0 ° 0	0 ° 0	0.0	0 ° 0	0°0
120	. 3215-01~	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000°4	0°0 4	000°4	6 0 0 <del>4</del> 0 * 0	000° 9°00	6.076 0.0
5 4 5	FULL 312E	1 1 1 1 1 1 2 2	0°0 0°0	0°0 0°0	000°9	60°0 60°0	000.00	0 0 0 0 0 * 0
1 2 2 2	LITTIPY, DOWFSTIC	HI CHSI	0 ° 0 0 ° 0 4	000°4	0 0 0 0 0 * 0	000°0	000*4	0 0 0 0 9 * 0 0 0
555	Luchar, finelism	I HIMUEST	0 ° 0	0° v	0 * 0	0 * 0	ú°0	0.0


ASSIMPTITING FOR EXDRENDIS VANTARLES 1975 + 2000

TANLE 2.10 FULL CHUSHAPTION FFICIENCE FACTORS

L 146	3 1 1		[ 66 ]	2661	5061	9661	1991	8041
IICITY EFFICIENCY	FACTORY ALL CLA	5555 56404141	290 29.00 29.00 29.00	21,000	62 ° 5	29,000	10,000	31,000
StHCOMPACE	MINE STIC	L L L L L L L L L L L L L L L L L L L	6,000 7,0	0000°4	000°0 90°0	0 0 0 0 0 0 0 4	6 0 0 9 0	6°00 6°0
61 71 SuffCoufaC1, A1	ND1 104	10110101010101	0 * 0	0.0	0°9	0*0	0 * 0	0°0
71 101 COMPACT, DOM 111	1571C	11110132	0°0 0°0	000°4	000° 0°	000.0	0°0 0°0	000°e
121 COMPACT, FUH 141 COMPACT, FUH	1164	1 HINDAD1	0 * 0	0 * 0	6 ° 0	0.0	0 ° 0	0 ° 0
171 HTP+517E		14160431	000°9	0°00 0°0	00000	000°9	0 ° 0 ° 0	0 ° 0 • • 0
191 FULL 5176 201		14140838	0°0 4	000°0 4	0.0.0	0000	0 0 0 ° 9	0 0 0 0 0 * 0 9
211 LUNURY, DOME 231 LUNURY, DOME	311C	L H L H L H L H L H L H L H L H L H L H	0 ° 0 0 ° 0	000°0	000*0	000	0°0 0°0	0°00 0°0
241 251 LURUPY, FOHE 251	10%	L L L L L L L L L L L L L L L L L L L	0°0	° ° 0	0*0	0.0	0 ° 0	с°0
271 Zalintchuar Efficify 241	ICY FACTONI ALL	CLASSES   XGROHTM	26,000	27,000	28,000	29,000	30,000 3,45	91,000 25,5
sal sunchwart. Szi sunchwart.	DIME STIC	1 CRUNTHI	000°9	0 0 0 0 0 * 0	000*9	0 0 0 0 9 • 0	6°030 0°0	0 0 0 ° 0 0 ° 0
1.1 141 Sunfawrict.	FINE ICH	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 * 0	<b>د</b> • ٥	0.0	0*0	0 0	0 ° 0
SAI COMPACT, DU' SAI COMPACT, DU' SAI	N.STTC	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0°00 9°00	0°00 9	000°9	0 ° 0 ° 0	6 000 0 0 0	0°0 0°0
sol ClivipaCT, FM all		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0°0	0*0	0.0	<b>6</b> • 0	0 * 0	0 ° 0
u21 431 410-512E 441		141+0432	0°0 0°0	000° 000° 4	0 0 0 ° •	000°9	6 • 0 0 0 • 0	00°0 9
asi full SIZE ezi full SIZE		14240422	0°0 0°0	000°4	0 0 0 0 9 • 0	6°00 9°0	0°0 4	0°0 9°0
aki a'al Luaury, Dnuf Soi	\$11C	1HTnDu31	0°0 0°0	0 0 0 ° 0 0 ° 0	6 • 0 0 3 0 • 0	6°30 0°0	\$ • 0 0 0 0 • 0	000°9
str Szr L'inquy, füut Str		хсил <i>ы</i> тні 	0.0	5 ° 5	0.0	0,0	0.0	0.0



45511M21111M2 1138 FILE MUNTS ANHINTER 1415 - 5000

*

TARLE 2,10 FULL CONSUMPTION FFFICIENCY FACTORS

1~1	1 1 F M		6561	2000
11212	A FFECTENCY FACTORS ALL	CLASSES 26HDWTH1	32,000 3,23	35,000
	SURCIUMACT, NUMESTIC	2GFCT7H	0°0 •	000°4
	SUACHAPACT, FURFICH	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	u ° 0	0 0
	COMPACT, DOMESTIC	1 4140932	000° 4	0°6 9°00
	COMPACT, FORTICN	L CHORTH	0 0	0°4
777	MID-5125	ICRONTH!	6°00 0°0	0°0 9°00
	FULL STIF	zgRB37H	0°0 0°0	0°0 9°0
=2=	LUXURY, DANESTIC	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0°0 0°0	0°0 9°00
	LUXHAY, FRHEIGH	1 10002	0 0	0°0
A I MIG	MmAV EFFICIENCY FACTORI	ALL CLASSES 1 TSMUATH	32,010 3,23	\$3,000 5,13
= = 7, :	SUNCOMPACT, DUNESTIC	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0°0 000°9	00°0 9
	SUMCHUPACE, FINETCH	ін[н0н91 1	0 * 0	0 0
4 ~ 1 (	CONFACT. NO'1 ST 1C	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	600° 60° 6	6,000 0,0
	Crithact, FOHE 744	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	û * 0	0°0
	r10=512f	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0°0 * ° 100	6°00 9°0
	FULL 317E	1 1 ~ 1 ~ 1 ~ 1 ~ 1 1	6°04 0°3	000.4
	LUBUUY, NOVESTAC	1. 26k0#1+1	6°3 9°4	00°0 9
	LUBURY, FINELGN	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 * 0	с. е

A3-61/A3-62

## APPENDIX A4

## REPORT OF NEW TECHNOLOGY

The work performed under this contract has not led to any new inventions; the resulting econometric model is, however, both innovative and state of the art. It provides long run policy analysis and forecasting of annual trands in the U.S. automobile market, given various policy options and alternative socioeconomic futures.

Ţ

Slaceman & HE 18.5 .A34 r 79-49 v.3 Schink, Geor Analysis c Market: Mc Form DOT F 1720.







