HE
18.5
.A34
no.
DOT:
NHTSA
79-49
v. 3

Wharton EFA, Inc.
Philadelphia, PA

Prepared for
Transportation Systems Center Cambridge. MA

Dec 79

 K1

U.S. Department of Commorce
 National lechnical Information Service
 NTILS.

AN ANALYSIS OF THE QUTOMOBILE MARKET: MODELING THE LONG-RIIN DFTERMINANTS OF THE DEMAND FOR AUTOMOBILES
 Volume III - Appendices to the Wharton EFA Automerile Demand Model

George R. Schink Colin J. Loxley
WHARTON EFA, INC.
One University City 4025 Chestnut Street Philadelphia PA 19104

DECEMBER 1979
FINAL REPORT

DOCJMENT IS AVAILABLE TO THE PUBLIC
THROUGH THE NATIONAL TECMNICAL INFCIRMATION SERVICE. SPRINGFIELD. VIRGINIA 2216:

Prepared for
U.S. DEPARTMENT OF TPANSPORTATION
NATIONAL HIGHU'AY TRAFFIC SAFETY ADMINISTRATION Office of Research and Developmer.t Washigton DC 20590

REPRODUCED BY

NATIONAL TECHNICAL
INFORMATICN SERVICE
U.S. DEPARTMENT OF COMRERCE

SPRINGFIELD, VA. ZZJEI

Form DOT F 1700.7 (8-72)
Reproduction of completed poge outhorized

A research undertaking of this magrituce required the concerted efforts of many people, each of whose contritiutioris were essential to its successful completion. The entire project was overseen by the project director, George R. Schink, who also conceived the overall structure of the model. James Savitt helped develop the approach employed, and assisted in the initial data gathering effort and equation estimation. Arthur Do.sd supervised the work of preparing data bases and computer systems, as well as having the main responsibilty for the international modeling effort. The exogenous projections for the model's forecasts were primarily developed by Sonia Klein. The final report was written and revised by Colin Loxley, who also was responsible for the forecast and simulation analysis. The prinicpal research assistarit throughout was Brenda McCowan. Most of the typing for the final report was performed by Renee Scott. Finally, the arichors wish to acknowledge the help of the TSC personnel Ron Mauri and Bob Mellman, whose critical reviews undoubtedly improved the final report. This report was originated under the Transportation Energy Efficiency Program (TEEP) at the Transportation Systems Center (TSC), under the sponsorship of the U.S. Department of Transportation, Office of the Secretary (DOT/OST). Work was completed under sponsorship of the U.S. Department of Transportation, National Highway Traffic Safety Administration (DOT/NHTSA).
hieptic conversion factoas

Aprendix Pace
Al DOCUMENTATION OF DRTA SOURCES ARD METHODOLOGY A1-1
Al. 1 INTRODUCTION A1-1
A1. 2 OVERVIEW OF THE DATA BASE Al-i
Ai. 3 SOURCES FOR BASIC DATA SERIES. A1-2
Al.3.1 Auto Data A1-2
Al.3.2 Other Data Al-3
A1.4 SIIE CLASS DEFINITIONS AND METHODOLOGY FOR DETERMINING MOJEL ESTIMATION DATA h1-4
A1.4.1 Size Class Definitions A1-4
A1.4.2 Estimation of liles Per Gallon. Al-8
A1.4.3 Cost Per Mile. A1-15
A1.4.4 New Car Prices Al-25
A1.4.5 Transportation Charges Al-27
A1.4.6 Purchase Taxes Al-32
A1.4.7 End of Year Stock A1-34
A1.4.8 Stock by Vintage and Size Class A1-36
A1.4.9 Used Car Prices. A1-49
A1.4.10 Family Units By State A1-56
A1.4.11 Consumer Prices by State Al-58
Al.4.12 Income Distribution By State. Al-62
A1.4.13 Non-Auto Travel A1-65
A1.4.14 Metropoliton Population A1-69
A2 CISCUSSION OF MODEL EQUATIONS A2-1
A2.1 REVIEW OF BASIC STRUCTURE A2-1
A2.2 CROSS-SECTION OF EQUATION ESTIMATE A2-2
A2.3 TRAN'SLATION TO TIME-SERIES A2-8
A2.4 TIME SERIES EQUATION ESTIMATES A2-10
A2.4.1 New Registrations and Scrappage A2-10
A2.4.2 Vehicle Miles Traveled Ä2-14
A2.4.3 Miles Per Gallon A2-10
A2.4.4 New Car Prices A2-18
A2.4.5 Used Car Prices A2-22
A2.4.6 Income Distribution A2-24
A3 EXOGENOUS ASSUMPTIDNS A3-1
A3.1 INTRODUCTION A3-1
A3. 2 SOURCES AND METHODS A3-1
A3.2.1 Demographic Inputs A3-1
A3.2.2 Economic Inputs. A3-6
A3.3.3 Auto Characteristic A3-9
24 REPORT OF NEK TECHNOLOGY AS-1
Table Page
Al-1 FORMAT FOR DOMESTIC CAR IMAGE FILE A1-72
A1-2 FORMAT FOR FOREIGN CAR I ${ }^{\text {FAGE }}$ FILE. A1-76
AI-3 LISTING or NAMEPLATES BY SIZE CLASS FOR DOMESTIC CARS IN 1972. Ai-78
A1-4 LISTING OF NAMEPLATES BY SIZE CLASS FOR FOREIGN CARS IN 1972.. A1-80
A1-5 NARKET SHARE BY CLASS FOR DOMESTIC CARS A1-81
A1-6 MARKET SHARE BY CLASS FOR FOREIGN CARS. A1-82
AI. 7 MARKET SHARE BY CIASS FOR TOTAL CARS. A1-83
A1-8 U.S. SHARE OF NEW REGISTRATIONS BY CLASS A1-84
Al-9 CITY AND highway driving mpg equations. A1-85
AI-10 A COMPARISON OF CONSUMER REPGRTS AND EPS C.ITY AND HIGHWAY DRIVING MPG DATA (1975) A1-87
A1-11 SALES LiEIGHTED AVERAGE CITY AND highway MPG ESTIMATES (1958- 1974) BY SZZE CALSS (DOMESTIC AND FOREIGN) A1-88
A1-12 SALES WEIGHTED AVERAGE CURB WEIGHT AND ENGINE DISPLACEMENT (1958-1974) BY SIZE CLASS (DOMESTIC, AND FOREIGN) A1-89
A1-13 SALES WEIGHTED AVERAGE FRACTIOK OF AUTOMATIC TRANSMISSIONS AND OVERDRIVE UNITS INSTALLED (i958-1974) BY SIZE CLASS (DOMESTIC AND FOREIGN) A1-90
à1-14 SALES WEIGHTED AVERAGE FRACTION OF FOUR CYLINDER AND SIX CYLINGER ENGINES INSTALLED (1958-1974) BY SIZE CLASS (DOMESTIC aND FOREIGN) A1-91
A1-15 farameters for cost per mile. A1-92
al-16 estimation of conslmer installment rate, new autos A1-93
A1-17 OPERATING COST COMPONENTS BY S:ZE CLASS AND YEAR OF OPERATION A1-94
A1-18 COSTS PER MILE ACROSS STATES IN 1972 A1-97
Al-19 NOMINPL COSTS PER MILE. A1-99
A1-20 REVISED BP.SE PURCHASE PRICES BY CLASS (USэCPUBASE-2). Al-100
A1-21 TOTAL OPTIONS EXPENDITURES BY CLASS (USASPUOPT-2), A1-101
Table Page
A1-22 MAXIMUM OPTIONS PRICES BY CLASS (USSCPOPTM) A1-102
Al-23 TRANSPORTATION CHARGES FOR DOMESTIC CARS BY STATE (1972) A1-103
A1-24 TRANSPORTATION CHARGES FOR IMPORTED SUBCOMPACT AUTOS BY STATE (1972) A1-105
A1-25 TRANSPORTATION CHARGES FOR DOMESTIC AND FOREIGN CARS OVER TIME (1947-1974) A1-10E
A1-26 NEW AUTO SALES TAXES BY STATE, 1972 A1-107
AI-27 STATE AND LOCAL TAX RATES ON NEW AUTOS--U.S Al-109
A1-28 INTERPO! ATION OF END OF YEAR CARS IN OPERATION (OPMVUAYEND) A1-110
A1-29 ESTIMATION OF END OF YEAR CARS IV OPERATION BY STATE. Al-111
A1-30 ESTIMATED SURVIVAL PROBABILITIES FOR CARS BY VINTAGE YEARS. A1-112
Al-31 ESTIMATED SCRAPPAGE RATE ADJUSTMENT FACTORS AND FRACTION OF CARS WHICH SURVIVE EACH YEAR BY VIHTRGE (1953-1974) A1-113
A1-32 ESTIMRTED NUMBER OF CARS IN OPERATION AT YEAR END DISAGGREGA- TED BY LOMESTIC AND FOREIGN SIZE CLASSES A1-116
A1-33 ESTIMÁTED NUMBER OF CARS IN OPERATION AT YEAR END DISAGGREGA- TEC BY SIZE SLASSES A1-117
AI-34 AUTCHOBILES ON WHICH USED CAR PRICE DATA WAS GATHERED. A1-118
A1-35 PRICE OF ONE TO SEVEN YEAR OLD FULL-SIZE CARS RELATIVE TO A NEW: FULL-SIZE CAR (1958-1074) A1-119
Al-36 CONSTRUCTED PRICE RELATIVES FOR ONE 'EAR OLD CARS VERSUS NEW CARS OF THE SAME SIZE CLASS (1958-74) A1-120
Al-37 5STIMATES OF PRICE DECAY FACTORS (λ 's) BY SIZE CLASS (1958- 1974) A1-121
Al-38 ESTIMATES (BASED ON λ ESTIMATE) OF TWO TO SEVEN YEAR OLD FI'LL-SIZE DOMESTIC PRICE RELATIVE (1958-1974) Al-122
A1-39 INDICES OF USED CAR PRICES, NEW CAR PRICES, AND NEW AUTO REGISTRATIONS A1-123
AI-40 USED CAR MARKET IDENTITIES A1-124

LIST OF TABLES (CONTINUED)

Table rige
A1-41 DEFINITIONS FOR USEC CAR MARKET IDENTITIES AI. 129
A1-42 NUMBER OF FAMILIES AND UNRELATED IN',IVIDUALS BY STATE, 1970 ANU 1972 A1-13!
A1-43 CONSUMER COST INDEX DATA. A1-132
A1-44 CALCULATION OF 1972 RELATIVE PRICE INDEX EY STATE. A1-133
Al-45 INCOME DISTRIBUTION DATA FOR 1970 AND 1972, BY STATE AND U.S. TOTAL A1-135
A1-46 INTERPOLATION OF NTWNAPT A1-137
A1-47 INTERPOLATION OF NTWNADTH Al-138
AI-48 CONSTRUCTION OF METROPOLITANIZATION INDEX (NPMET). A1-139
A2-1 DESIRED STOCK AND SHARE EQUATIONS A2-25
A2-2 TOTAL NEW REGISTRATIONS AND SCRAPPAGE A2-30
A2-3 SHARE OF NEH REGISTRATIONS EQUATIONラ A2-32
A2-4 DESIRED COMESTIC SHẢRE BY SIZE CLASS EQUATIONS A2-34
A2-5 DOMESTIC SHARE EQUATIONS. A2-35
A2-6 VEHICLE MILES TRAVELED. A2-39
A2-7 RE-ESTIMATED CITY AND HIGHWAY MPG EQUATIONS A2-40
A2-8 E.P.A. MILES PER GALLON EQUATIONS A2-43
A2-9 NEH CAR PRICE EQUATIONS A2-45
A2-10 EXPENDITURES FOR OPTIONS INSTALLED. A2-50
A2-11 - TRANSPORTATION CHARGES BY CLASS A2-55
A2-12 USED CAR MARKET EQUATIONS. A2-59
A2-13 INCOME DISTRIGUTION EQUATION A2-53
A3-1 TABLES OF EXOGENOUS INPUTS, BASELINE A3-11

APPENDIX A 1 DOCUMENTATION OF DATA SOURCES AND METHOCS

A 1.1 INTRODUCTIOH

This appendix is divided into three major subsections. The first presents a general overview of the WEFA data base while the second describes the sources for the basic data series. Finally, the third subsection presents a description of the size class definitions used and sumarizes the methods used to construct thuse series needed for midel estimation and not directly available from existing sources.

A 1.2. OVERVIEW OF THE DATA BASE

In the sourse of this project, Wharton EFA has assembled a massive and unique data base for the U.S. auto market. While it was no: our primary purpose to construct such a data base, it was necessary that such a data base be constructed to suppori the model specification developed during the first three moriths of the project.

The U.S. auto market (and auto industry) is exceptionally well documented, but these data were not organized conveniently for our purposes. Since the quality of a model is limited by the quality of the dara on which its estimation is based, we devoted much time and effort to carefully collecting, analysing, and organizing these data series. The end result is a data base containing detailed data on the
number of cars registered for 2234 different dorestic cars (1947 to 1974) and 982 different foreign cars (1948 to 1974). For each of these domestic and foreign cars we have assembled cata on base sticker prices, options prices, percent of options installed, weight of options, and curb weight and engine characteristics. In addition, a complete file on the number of new cars registered by state was assembled and matched with the U.S. total file for 1969 through 1972.

The WEFA model specification also required the collection of a large number of series for the U.S. and by state on income, prices, demographic characteristics, and transportation system characteristics.

The cross-section data base currently contains in excess of 500 data series while the time series data base contains in excess of 1200 data series (incluciing aggregations of the auto data but not the model specific data).

A 1.3 SOURCES FOR BASIC DATA SERIES

A 1.3.1 AUTO DATA

The series for new registrations, cars in operation (the auto stock series used), and scrappage are all R.L. Polk and Co. data obtained either directly from R.L. Polk and Co. or from published material (either as shown in various issues of Automotive News Almanac
or as shown in various issues of Wards Yearbook). Data on auto characteristics (base sticker prices, base curb weight, percent of installed options, weight of installed uptions, price of installed options, and engine characteristics including number of cylinders and displacetusnt) were obtained from various issues of Wards Yearbook and Automotive News Almanac. - The extent of this data is best illustrated by examining Tables A 1-1 (for domestic cars) and A 1-2 (foreign cars), pps. A1-خ2 and Al-76. These tables lay out the basic series contained in the HEFA auto registration and characteristics files as well as constructed series which are discussed in subsequent parts of this section. The domestic file contains data for 2234 individual autos while the foreign file contains data for 98 individual autos.

In addition, WEFA has the R.L. Polk and Co. state registration data (co:ering the 50 states, Washingtor, D.C and the Federal Government) for 1969 through 1972. These data match the U.S. total (in terms of number of cars included) over the same time period.

A 1.3.2 OTHER DATA

In aduition to the substantial auto data base described above, hEFA has assembled large cross-section (1970-1972, for 50 states and D.C.) and

I These data (excluding base prices) for foreign cars prior to 1959 were obtained from a large assortment of British and U.S. auto magazines.
time series (1948-1974) data bases. These data bases include the various measures of price, economic, denographic, and transportation system variables required to suppert both the cross-section and time series equation estimation and model simulation work described elsewhere in the rejort. Without dwelling on specific series, the basic sources by type of data are as follows:

Income and some price data: Bureau of Economic Analysis
Consumer price data: Bureau of Labor Statistics
Demographic data: Bureau of the Census
Transportation System Data: Federal Highway Administration and Bureau of the Census

Foreign Price Data: OECD Data Bank .
Gasoline Price Daさa: Platts Oil Handbook

A1. 4 SIZE CLASS DEFINITIONS AND METHONOLOGY FOR DETERPT:IING MODEL ESTIMATION DATA

A1,4.1 SiZE CLASS DEFINITIONS

As described in Chapter 3 the five size classes are distinguished accordir. g to wheel base, this being a concise, unambiglous and easily compiled relative measure of passenger capacity and "roomiress". The results of this classification scheme for 1972 may be seen as make and model listirgs by size for donestic cars in Tatle A1-3, page $.4-78$, and for foreign cars in Table A 1-4, page Al-80.

Turning to the exceptions and special cases, I/ for domestics the most important violation of the general rules centers around the shift of the largest Chevrolet, Ford, and Plymouth cars from mid-size cars to full-size cars which competed actively in the same market with Pontiac, Oldsmobile, Buick, Mercury, Dodge, and Chrysler full-size cars. Beginning with Chevrolet in 1959, these three makes introduced fullsize cars (Ford followed in 1960 while Plymouth only became fully competitive in the full-size market in 1964. ${ }^{\text {I }}$ To avoid an abrupt shift in the shares and to allow for a recognition lag on the part of consuniers that, for example, the full-sized Chevrolet was essentially the same car as the full-sized Pontiac part of the full-sized new registrations by Chevrolet, Ford, and Plymouth were allocated to the mid-size class. The sperific allocation of full-size to mid-size by year is as follows: 6/7 in 1959; 5/7 in 1960; 4/7 in 1961; 3/7 in 1962; $2 / 7$ in 1963; and 1/7 in 1964. While this allocation scheme is clearly arbitrary, we felt that the abrupt shift was totally inappropriate given that consumers take time to adjust to the upgrading of a product.

The other exceptions for domestic cars are minor by comparison and are as follows:

1. Corvair is Elassified as a subcompact even though its wheel-

[^0]base was greater than 100 inches (reviewing the sales literature from the period, it is clear that it was GM's intent to use the Corvair to compete with VW).
2. Mercury cars in the early 1950's had a wheelbase which was shorter than full-size cutoff, but Mercury was kept in the fullsize class.

There are a few other minor exceptions, but they involve too few cars to merit enumeration.

For foreign cars, the major problem centers around the fact that the registration detail for imports does not distinguish models. Thus, we have one number for Audi with no split between the tax (subcompact) and the 100LS (compact). Imports are thus classified by make, e.g. all Audi sales are classified as "compacts". The makes listed under foreign compacts in Table A 1-4 were, for most of the time period, the major entrants in the coripact market and (with the exception of the Citroen Masserati) were always classified as compacts. I/ The major questionable entrant in the luxury group (on a strict price basis, especially in the earlier years) is the Alfa Romeo, with Porsche falling slightly below the cut-off point in the eariy 1960's and late 1950's. Since these two cars are anything but utilitarian transportation, and have always been substantially more ex-

[^1]pensive than the Triumph or MG sports cars included under subcompacts (which is tr: only other place to put the Alfa Romeo and Porsche), we elected io alsays include these cars in the luxury group. It should be noted that no foreign cars are included in the mid-size or full-size classes. I/

Table A 1-5, page Al-81, presents the number of new registrations and market share by size class for the five domestic classes, while Table A $1-6$, page Al-82, presents the same statistics for the three foreign car categories and Table A 1-7, page Al-83, presents these statistics for combined domestic and foreign (iotal) cars.

Domestic subcompacts accounted for a very minor share of the U.S. market prior to 1970,21 and prior to 1959, the compact share of the domestic market was also very small. The mid-size (intermediate in iable) class falls rapidly from 1959 to 1965 primari?y due to the movement of the largest Chevrolet, Ford, and Plymouth from the mid-size to full-size category. The luxury class share increases fairly steadily throughout the period.

The largest market share with the foreign car group is the subcompact group. The compact share has been fairly stable since 1960 but exhibits a noticeable increase in 1972, 1973, and 1974. In the earlier years, the share held by luxury cars in total foreign cars was fairly sub-

[^2]stantial, but fell sharply in 1957 as VW began to market seriously in the U.S. Since 9958 , the luxury stiare has been quite stable.

Turning to the total market share tatle, one of the more interesting features is the sharp upsurge in the subc mract share during the 1959 through 1961 period due largely to the shirp increase in foreign subcompaこt sales. The remaining categories essentially follow the same pattern as obser:'ed for the domestic cars as domestics dominate (or are the sole members) of these groups.

Table A $1-8$, page Al-84, shows the domestic new registration's share for each of the five size classes. The erratic movements in the domestic share of subcompacts prior to 1970 is due in large part to the small number of domestic cars. Starting in 1970, when the U.S. auto makers first decided to compete in this market, the domestic share of subcompacts has risen steadily, attaining a high of 48.22% in 1974. The domestic share of the compact market has declined slowly but fairly steadily from a recent high of 98.17% in 1962 to a recent low of 92.50% in 1974. In addition, foreign llxury cars have made significant gains in the luxury market: the domestic share of luxury cars was 96.32° in 1965 and it fell to 88.21% in 1974.

A 1.4.2 ESTIMATION OF MILES PER GALLON

Fuel efficiencies by class are critical variables in the model.

Not only are they a prerequisite for evaluation of gasoline costs, but their future trends are also of concern in their own right, given prasent concerns with energy use. Estimates of miles per gallon for each ilass and by foreign and domestic within classes are therefore required.

The approach used in this study begins by estimating relationshifs based upon data for a sample of individual autos. Given this dat, we can estimate mile per gallon for each model sold in a particular year, using its known characteristics of weight, engine size, etc. The sales-weighted (harmonic) mean MPG is then computed for all models in a particular class, yielding the class MPG. It is these mileage data that are used to estimate the equations for the class relationships used in the medel to project MPG by class. ${ }^{\text {I/ }}$

At the outset of this study, we had planned to use MPG estimates developed by T.C. Austin and H.H. Hellman for the EPR., 2/ The authors presented estimates of fuel economy (MPG) for 1957 through 1975 by inertial weight classes. These estimates were based on very small samples for the sarlier years, and the authors caution that these early results are possibly subject to large errors. Close examination of the results (See Table 1 in the Austin and Hellman Study) reveals rather erratic variations over time and across classes. Since a reasonable MPG estimate is

[^3]essential to compute cost per vehicle mile properly, we investigated a!ternative potential sources for MPG estimates. The various auto magazines have not been consistent until very recently in their techniques of measuring MPG in their road tests. The only source which has bern quite consistent in its testing and reporting procedures is Consumer Re ports.

Data from 723 individuai road tests were collected from all issues (1950-1975) of Consumer Reports magazine. I/ The data collected inclucied city driving MPG, nighway driving MPG, curb weigh*, engine displacement, horsepower, axle ratio, transmission type, number of cylinders,manufacturer and make, and body type (sedan or station). Whi?e Cons:mer Reports generally tests a "representative" sample of cars each year, it is not exhaust ve. To obtain estimates of MPG for those ears not explicitly considered, we therefore estimated equations for city and highway driving MPG (MPGC and MPGH, respectively) in accordance with the methodology outlined herein.

Austin and Hellman experimented with equation specifications for MPG involving engine horsepower (HP), irertial weight (Ih'), engine displacenent (DISP), axle ratio (AR), compression ratio (CR), revolucions per minute, per mile, per hour in top gear (N / V), and $N O_{\%}$ emission

For the earlier years, Corsumer Reports, conducted some tests without providing complete information. As a result, some of these earlier tests were excluded from the analysis. The sample size of 723 is after these exclusions.
level in grams per mile ($\mathrm{H} O \mathrm{O}$). They specified an equation involving up to ten terms which is as follows:
$M P G=a_{0}+a_{2}(1 / I W)+a_{2}(H P / I W)+a_{2}(H P / D I S P)+a_{5}(A R)+a_{5}(H P)$
$+a_{6}(D I S F)+a_{7}\left(C R^{4}-1\right) r_{1}\left(C R^{4}\right)+a_{\varepsilon}(N / V)+a_{9}(D I S P)(N / V)$
$+a_{20}$ (NOX)
where the $a_{i}(i=0,1, \ldots, 10)$ are coefficients :0 be estimated. The estimated rosults for this equation I/indicate that only inertial weight (IW), displacement (DISP), and horsepower (HP) are statistically significant in explaining MPG from the list of variables consicered, and that inertial weight (IW) alone produced a corralation coefficient of 0.9277 versus 0.9475 when all ten variasles were included. However, their data included only 1973 model cars for which the relationship between all these factors might be quite close. Austin and Hellman consider as a potentially impertant factor, but do not include in their equation specification: transmission type (automat'c, manual, or overdrive).

While we agree generally with Austin and Hellman on the list of relevant variables to be included in MPG equations, we had a strong a priori view that the form of the basic equation should be multiplicative (log-linear) rather than linear, as follows:

I/ Austin and Heliman, op. cit., $\% .14$.
$M P G=A(1 W)^{\alpha} I\left(D_{i S H}\right)^{\alpha_{2}}(H P)^{\alpha_{3}} \ldots$
where
$I W=$ Inertial weight,
DISP $=$ Engine displacement,
HP = Engine horsepower
In estimating the equations, we tried both the linear and log-linear forms and the latter form fit the data better.

In specifying our equations, we considered inertial weight (IW), engine displacerient (OISP), engine horsepower (HP), axle ratio (AR), type of transmission (DUMATR for autoriatic and DUMODR for overdrive), and number of c.ylinders (DUMACYL for 4 or less cylinders and DUMECYL ior 6 cylinfurs). Early experimentation indicated the axle ratio (AR) was insignificant so this variable was droppes. We also found that only one of the engine size measures could be inclucied in the equation (either displacement (DISP) or horsepower (HP)). Since the former variable was most significant when included alone and remained significant when horsepower ($v: P$) was introduced, we electad to exclude horsepower (HP) from the equations. Tre transmission type dumm variables (DIMATR and DUMODR) and the number of cylinders dumies (DUMACYL and DUM6CYL) also were significant in explaining MPG. I/

Table A 1-9, page Al-85, presents the estimated equations for city driving MPG (MPGC) and highway driving iPG (MPGH). Our results confim

IT The overdrive dumm was relevant only for the highway driving NiPG equation.
the basic finding of Austin and Hellman that inertial weight (IW) is the most important factor in determining MPG, but engine displacement (DISP) is also an important factor. Both inertial weight (IW) and engine displacement (DISP) have stronger negative influenros on city driVing MPG (MPGC) than on highway driving MPG (MPGii). An stomatic transmission reduces MPGC by 3.2% and MPGH by 5.3% whiie an overdrive increases MPGH by 7.6%. Four and six cylinder engines increase MPG (vis-a-vis mileage for ar 8 or more cylinder engine) for both city and highway driving.

The time shift dummies were introduced to aapture technological factors sucil as engine and iransmission efficiency improvements (positive effects), the increased installation of unaccounted-for options such as power steering and air conditioning (negative effects; and the introduction of pollution controls (negative effects). These shifts tend to coincide quite closely.to major model offering changes. These time shift dummies suggest that these other factors caused city driving MFG to fall slightly between 1954 and 1955, decline very slowly through 1266, and then fall sharply in 1967.- These shift dummies suggest a very modest "efficiency increase" in city driving MPG in 1975. For highway driving MPG, the time shift dummies suggest a modest but steady improvement in MPG through 1966, where the trend reverses, reacining its minimum value

[^4]in 1972. No perceptible improvement in MPGH was found between 1973 and 1975.

We had initially hoped to make use of some of the EPA MPG data for 1973 onward, but these data are inconsistent with the Consumer Reports data both in terms of levels (being consistently higher, especially for city drivers) and in terms of year to year movement (as a result of the changes in the EPA methods of calculating MPG from the emissions data). Table A 1-10, page Al-87, presents some comparisons of the Consumer Reports and EPA MPG estimates for 1975. Given the discrepancies between the Consumer Reports and EPA MPG data, the equations presenied in Table A 1-10 were used to estimate city and highway driving MPG data for 1947 to 1974.

Tc use these equations, data was collected on curb weight, displacement, percent with installed automatics, percent with installcid overdrive, percent with 4 cylinder or less engines, and percent with 6 cylinder engines for each domestic and foreign car reported in the R.L. Polk and Co. new registrations data. I/ The equations were then applied to each auto in the file (2234 domestic cars and 982 foreign cars) to generate estimates for city and highway MPG for that car. Then individual new car registration data wereaggregated into the 8 basic size classes (5 domestic and 3 foreign)?! Sales weighted means for the

[^5]city and highway estimates of MPG (MPGC ard MPGH, respectively) were computed for each class (see Table A 1-11, page Al-88), as well as sales weighted averages for the basic determinants of these MPG estimates:- curb weight and engine displacement (see Table A 1-12, page Al-89); fractions of cars with automatic transmission, and overdrive (see Table A 1-13, page Al-90); and fractions with 4 (or less) cylinder engines and with 6 cylinder engines (see Table A 1-14, page Al-91).

A 1.4.3 COST PER MILE

The cost per mile measure originated for this study is of critical importance as a major influence on both total autos demand and its distributior by class and by domestic versus foreign origin.

As discussed in Chapter 3, there are three elements that enter the conceptual basis for cost per mile:
-- The stream of expenditures must be put onto the same scale, and thereby compared to, the stream of services. This means that the costs and benefits (miles driven) over cime must be capitalized i.e. discounted back to present value terms.

- The costs considered are all those incurred over the economic life of the vehicle ard not solely those faced by the new car buyer, i.e. the relevant costs are those incurred by all owners of the vehicle. The cost per mile measure might therefore be characterized as a "social" or "society" cost.
-- All costs of purchase and operation should enter into the calculation in proportion to their relative importance so that the appropriate weight is given to their economic significance.

1/ Required for the equation estimates by class as previously discussed.

The coumpusational probiems involved derive directly from these three principles. There is, first, the question of the "appropriate" discount-rate, second, whether (or how) the purchase-trade in-resale question should be addressed, and third, (related to the above) the treatment of purchase cost vs. operating costs.

The discount rate choice is, inevitably, somewnat arbitrary. Since future costs are projected at current levels (i.e., no inflationary expectations are incorporated) it should be a "real" discount rate. The rate should reflect the consumer's willingness to sacrifice present consumption for the future benefits expected from the "capital good" purchased. We examined the implicit real interest rate that consumers have been willing to pay for rortgages, and found (for 1972, the "equilibrium" year) this to be around 5\%.

In terms of our computed cost per mile figures the discount rate can vary over a fairly wide band without substantially altering the estimates--or, more importantly, their relative positions. The discount rate is of more significance in, for example, assigning importance to the gasoline cost component. Therefore, if the model were found to be unrealistically insensitive to gasoline cost, this wolld indicate the discount rate was too high.

Let the discount rate be denoted as R1 (where R1 is ccaverted from percentage terms to a fraction), then costs incurred inyear i are dis-
counted thus:

$$
\text { Discounted Cost } \text { Cos }_{i}=\operatorname{CosT}_{i} /(1+R T)^{i}=\operatorname{CosT}_{i} *(T 1)^{i}
$$

where
$T i=1 /(1+K I)$
The car is assumed to have an economic life of 10 years, hence i takes the values 0 through 9 .

The purchase and interest costs were analyzed as follow's. The furchaser must pay the complete purchase cost of the car (PUTOT) - including the läse list rrice plus extra options plus transportation plu's taxes. Iri addition, there is a finance charge that depends upon the fraction of this total that is morrowed (FRACFIN), the period financed, arid the installment rate (R2).

Since we are concerned with the cost to all owners, over the economic liff of the car, the methodo?ogy aciopted is to suppose that the vehicle is resold each year. Thus the first buyer prys interest on the financed fraction of the new car orice. In the next year the second buyer pays interest on the new financed portion of the one year old price, and so on. This can also be interpreted as one purchaser, who, each year, renegotiates his auto finaricing, paying off each year an amount exactly equa! to the car's economic depreciation and financing successively smaller amounts. So long as the used car market and firancing sources are relatively 'perfect' markets, this approach
has the vehicle owner in equilibrium in each year. The finance costs in year i may therefore be represented as:

$$
\text { Finance Cost }{ }_{i}=\text { PUTOT } * \text { FRACFIN }_{i} * P R_{i} * R 2_{i}
$$

where: PUTOT $=$ New car purchase cost FRACFIN $_{i}=$ Fraction financed in year i $P R_{i}=$ Price of car age i relative to PUTOT

The new car cost, PUiGT, is taken from the basic auto data and is an endogenous variable predicted by the model. The $P R_{i}$ values are the average price relatives, across all classes, for the years 1969-72, determined from the price "decay" factors estimated for the used car price analysis (see later in this appendix). These values are given in Table Al-15, page 41-92, ($P P_{0}$ is, of course equal to one). The price relatives have remained fairly stable over time (according to our admittedly very limited information) and there is no data on interstate differences, thus they are constants.

The evidence on fraction financed comes from two sources. The Feceral Reserve Bulletin, Septembor, 1973, p. 643, Tabie 2, gives the average amounts financed for new cars from lume 1971 to July 1973. The values range from an average of $\$ 3,054$ for the second half of 1971 to an average of $\$ 3, \angle 31$ foi: the first half of 1973. The National Comission on Consumer Finance, Technical Studies, Vol. III, p. 42, Table 1007-7, gives a figure for mid-1971 of $\$ 2,975$ for new cars. These values for 1971
are ronarkably consistent and suggest a reasonable accuracy.
Compering rehese values to our PUTOT estimates we find a ratio of about 0.75 over this period. - For used cars, the same Federal Reserve Bulletin source gives $\$ 1600$ for mid- 71 and $\$ 1800$ for mid-73. Comparing these to our average used car price estimates, we observe a lower figure of $0.60-0.65$. In evaluating these data we must take account of the fact that some cars will not be financed at all. For new cars, it would appear that only a fairly small proportion are completely unfinanced, but for used cars - especially older enes - quite substar:*ial proportions may be unfinanced.

Given the limited data available we have elected to apply a declining FRACFIN as indicated in Table Al-15, page fl-92. Granted, these proportions are somewhat arbitrary but some assumption must be made until such time as a thorough study of automobile financing is performed. These frastions are held constant over time and across states (the Consumer finance Commisssion study did suggest some interstate variation but we eleted to ignore this for simplicity).

For auto finance rates we again have the two sources of the Federal Reserve Bulletin and the Consumer Finance Commission Study. Turning first to the cross-sectional analysis, the data are for mid-7l while our cross-sectional year is 1972. On the basis of the Federal Reserve

I/ Note that the Federal Reserve ratios given in the same table relate to dealer cost only.

Eulletin data (see above) for mid-71 and mid-72 the commercial bank. rates by state 1/ were adjusted dowwards by 0.95 , and the finance company rates by 0.98 .2 The relative importance of banks versus finance companies for auto loans does vary by state. Fortunately tre commission study has data on the ratio of new auto purchased paper to total new auto credit extended and this ratio is used to weight the finance company rate and one minus this is the weight for the commercial bank rate. Algebraically, we therefore have:

$$
\begin{aligned}
R 21972= & \text { PRCHP } / C R *(A P R F I N * .98)+(1.0-P R C H P / C R) * \\
& (A P R C O M M * .95)
\end{aligned}
$$

where:

R21972: Mean Average Percentage Rates, by State, for New Autos, 1972.
PRCHP: Volume of New Auto Purchased Paper, by State
CR: Total New Auto Credit Extended, by State
APRFIN: Mean Average Percentage Rates, by State, for New Autos, Finance Companies, Mid-1971.

APRCOMM: Mean Average Percentage Rates, by State, for New Autos, Commercial Banks, Mid-1971.

For the time-series analysis we only have consistent data from the Federal Reserve Bulletin from January 1972 through April 1976. For this period the available evidence suggesis a roughly equal distribution between commercial bank loans and finance company loans, and we therefore averaged

[^6]the two for the new car mean APR.
Fortunately we were very successful in relating this consumer installment credit rate to Mcody's Total Corporate Bond rate in order to obtain a complete time series (relationships were estirated both monthly and quarterly). The estimated equation and some of the annual estimates resulting are given in Table Al-16, page Al-93. Comparison with other rates - such as mortgaje rates - (allowing for a faster response to inflation and a risk premiumi) silggest these values are reasonable.

Finally, we have allowed for the fact that much higher interest rates are charged on used autos than new. Once again, data are scarce and some arbitrary assumptions had to be made. Fortunately, since both FRACFIN and PR decline strongly over the age of the car, the importance of these assumptions becomes progressively less important. We have elected to increise the rate (R2) by 1% for each year of the car's age for the first 6 years, then setting it at the maximum permissible rate for the remaining three years of its economic life. For time-series use, the maximum rate was assumed to average 20%. Rate ceilings by state are given in the Commission study referenced earlier, where no value was given, a rate of 22% was used.

Now we turn to operating costs. In the cross-sectional analysis these are divided into three groups: fuel costs, repair costs, and other. The latter includes insurance, tires, motor oil, and parking,
garaging, and tolls. Unfortunately there is no state data for these components.

Repair costs are estimated by assuming that interstate differences are primarily due to labor costs. For the U.S. in 1972 about half of repair costs were labor. We therefore computed a relative labor cost, using wages per man year for auto repair shops and garages in the state divided by the same for the U.S., gave this a weight of 50°, and weighted a constant (across states) parts index by 50%. The result is our estimated repair cost index.

The final direct operating cost categcry is fuel costs. Miles driven in a year are divided by MPG, and multiplied by the per gallon gesoline price, where the latter varies across states. I/ Operating costs by state (cross-sectional) can therefore be written as:

$$
\begin{aligned}
& \text { Operating costs }{\underset{i}{j}=}^{\dot{\text { REFIH}}{ }_{i}^{\dot{j}} * \text { REP }_{i}+\text { OTH }_{i}+} \\
&\left(\text { MILES }_{i} / \text { MPG }_{i}^{\dot{u}}\right) * \text { PGAS }^{j}
\end{aligned}
$$

where:

> Superscript j refers to siate j
> Subscript i refers to age of car
> REPII $=$ Repair Index
> REP $=$ Average Repair Cost

[^7]OTH = Average Insurance, Tires, Oil, etc., Cost
MILES $=$ Miles Driven
MPG $=$ Miles Per Gallon
PGAS = Retail Price of Gasoline
In the time-series analysis each component of operating cost is distinguished. In computing the historical values for costs each component's 1972 valuewas indexed by the appropriate consumer price index, rebased to $19 i^{2}=1.0$.

The complete calculation of capitalized cost per mile can therefore be written as (omitting size class identifiration for clarity):

$$
\operatorname{CPMCAP}_{t}=\left(\text { PCCAP }_{t}+\text { OCCAP }_{t}\right) / \text { MICAP }_{t}
$$

where:

$$
\begin{aligned}
\operatorname{MICAP}_{t}= & \sum_{i=0}^{9} \text { MILES }_{i} /\left(1+\mathrm{Rl}_{t}\right)^{i} \\
\operatorname{PCCAP}_{t}= & \text { PUTOT }_{t} *\left(1+\sum_{i=0}^{9} \text { PR }_{i} * \text { FRACFIN }_{i} * R 2_{i, t} /\left(1+\mathrm{RI}_{t}\right)^{i}\right) \\
\text { OCCAP }_{t}= & \sum_{i=0}^{9} \quad \text { MILES }_{i} * \text { PRJAS }_{t} / \text { MPG }_{i, t}+a l_{i} * \text { CPREP }_{t} \\
& +a 2_{i} * \text { CPPKG }_{i}+a 3_{i} * \text { CPINS }_{t}+a 4_{i}^{*} \text { CPTIR }_{t} \\
& \left.+a 5_{i} * \text { CPOILt }_{t}\right) /\left(1+R l_{t}\right)^{i}
\end{aligned}
$$

Definitions of Terms and Assumptions:

```
MILES i = Total Miles Driven in Car's ith year
    (Assumed constant over time, across size classes and across states)
```

Thus cost per mile is a fixed-weight cost index for the average car.
$\begin{array}{lllllllllll}i & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$ MILES $=14.5 \quad 13.0 \quad 11.5 \quad 11.0 \quad 9.5 \quad 9.5$ 9.0 $\begin{array}{lllllll}14.3 & 7.6 & 7.1\end{array}$ (Thous.)

```
    \mp@subsup{PUTOT }{t}{}= Total Purchase Cost, New Car
    (Includes àll costs, including taxes)
    PR}\mp@subsup{R}{i}{}=\mathrm{ Price Relative, Car Aged i Years to New
        (Averaged across all size classes, constant over time
        and across states)
FRACFIN
    (Assumed constant over time, across size classes,
        and acros's states)
    R1}t=\mathrm{ Discount Factor
        (5% used for C.ross-Section)
R2 i,t = Consumer Installment Rate, Car's ith year
        (Variation by age of car assumed)
PRGAS
        (Includes taxes, varies by state)
    ali}=\mathrm{ Repair iost in Car's ith year, 1972 1/
    (Varies by constructed labor cost index ạcross states)
CPREP = Consumer Price Index, Repairs, 1972=1.0
    (Assumes same rate of change across size-classes)
    a2, = Parking, Toll and Garage Costs in Car's ith Year, }197
    (Assumed constant across size-cilasses and states)
CPPKGy = Consumer Price Index, Parking, 1972=1.0
    (See above)
    \alpha3; = Insurance Costs in Car's ith Year, 1972
            (Assumed constant across states)
CPINS_ = Consumer Price Index, Insurance, i972=1.0
    (See above)
```

1/ All 1972 operating cost base data is from L.L. Liston and C.L. Gauthier, Cost of Operating An Automobile, U.S. Department of Transportation, Federal Highway Administration, Office of Highway Planning, Highway Statistics Divisicn, April 1972.

```
a4i}= =Tire Costs in Car's ith Year, 1972
    (Assumed constant across states)
CPTIP = Consumer Price Index, Tires, 1972=1.0
    \alpha5i= Oil Costs in Car's ith Year, 1972
CPOIL_ = Consutier r Price Index, Oil, 1972=1.0
    (See above)
```

The data for operating cost components by size class and year of operation is given in Table Ai-17, page Al-94. The 1972 capitalized costs per mile across stat's by class are given in Table Al-18, page Al-97 and the capitalized costs per mile over time by class are given in Table Al-19, p:ge Al-99. Data and methods for purchase prices and their components are detailed in the next section.

A1.4.4 NEW CAR PRICES

There are many components to the total new car purchase cost (PUT:.) that are required for each of our eight size-classes. We begin with the base purchase and options prices. Our source data are the listed base sticker prices and options prices, - which we have not attempted to adjust for any discounts. These detailed statistics have been aggregated by sales-weighting up to the eight classes for anaiysis.

The first necessary step was to obtain estinates of these prices and expenditures that were consistent both across classes and over

II See Section A1.3.1 for sources
time. The data corsist of prices including installed options. But the number and type of options that were "standard" have varied widely between rlasses and over time - tending to show a steady upward trend fo" eact class.

Therefore, in order to obtain comparable, consistent estimates, the value of all installed options - both "standard" and "ex-tras"-was computed and subtracted from the initial base price to derive a base purchase price for a "stripped" vehicle in a given class. The revised estimates of base prices by class are given in Table Al-20, page Al-100.

This "stripped" base price should more acurately reflect changes over time in the cost of the car itself - and not merely the addition of more standard features - and differences in cost between sizes. Likewise, the series on expenditures for options now reflect the total spent in addition to the "stripped" base price. These revised data for options expenditures by class are given in Table Al-21, page Al-101.

A further series was computed for each class, the cost of a fixed ", rackage" of all options that could be installed. The reason for this was simple: increased expenditures on options reflect two things: greater consumer demand for more features and increases in the cost of

1) The purchase price is thus estimated as the su: of the base "stripped" price plus all options expenditures.
the options avallable. Since the "maximum installed options" values relate to a fixed physical combination, increases in these values reflect rising costs only - it is, therefore, a pure "price" variable! These maximum options prices by class are given in Table Al-22, Dage Al-102.

Finally, there was insufficient data on options for foreign cars to fully implement this approach. It was therefore decided to assume that expenditures on options were the same as the corresponding domestic class. Many of the options on foreign cars are produced in the U.S. and/or purchased from the same suppliers as U.S. companies. This assumption of "competitive equality" thus seems reasonable.

AI.4.5 TRANSPORTATION CHARGES

The ne:it essential element in total delivered new car price to be considered is the data for transportation charges over time and for states in 1972. Since our definition of size classes does not exactiy conform with any published definition, we needed transportation charges for specific makes and models which could be merged with our registrations file on a car by car basis, and then sales-weight averaged.

After a thorougn search for data which came as close as possible to mieeting our needs, we detemnined that the data on transportation charges (for domestic and foreign cars) prepared by the Automobile Invoice

[^8]Service (AIS) ${ }^{1 /}$ were the most reliable and consistent available. They were kind enough to supply us with complete data on transportation charges for domestic cars by make and model for 76 cities from 1972 through 1976 (1972 is as far back as this extensive compilation extends). In addition, they supplied us with as much earlier transporsation data as could be obtiined from their back files, for Ford and Chevrolet Automotiles (all size classes) back to 1956 for the western region. $2 /$ They also supplied us with date on estimated transportation charges for foreign subcompact cars for 41 cities for 1967 through 1972. These data are not model specific.

The first step in processing these data on transportation charges (both domestic and foreign) was to convert the city estimates into state estimates. Since the sities covered in the domestic and foreign data are not the same (more specifically, the cities included for the foreign transportãtion data are not strictiy a subset of the citics included for the domestic transportation data, the following process was repeated for each of the two sets of data:

1) For states with more than one city included, the city transportation charges were weiginted by the SMSA population (or population of the county where the city was located for non SMSA's) and a weighted average was computed. In a few cases

I/ Automobile Invoice Service is a division of Gousha/A Times Mirror Company, 2001 The Alameda, P.O. Box $\ddagger \in 227$, San Jose, California, 95150.

2/ The unly files which had been kepr relatively consistently were for the western regions. Also, these values represented maximum charges.
cities not in the state but essentially contiguous with a city in the state were included in the average using as a weight the relevant population weight for the city within the state.
2) For states with no city present in the data, we used averages of rates for cities essentialiy the same distance from Detroit (in the case of domestics) or from the rearest port of entry (for foreign cars). In some cases, averages for cities whose average oistance from the relevant point were equal were used.

Having determined the weighting scheme for computing the averages by state, the infividual make and model transportation charges were examined (for domestics only) to see if there was a pattern involved so that the make and model data could be collapsed (without any loss of information) to ? relatively small number of classe; (denoted as transportation rlasses). In fact, the transportation charges can be grouped into 11 classes without any loss of information as follows:

1. All subcompact cars except specialty compacts (like Mustang II).
2. Compact sedans and compact specialty cars (like the Pontiac Firebird).
3. Compact wagons.
4. Mid-size sedans
5. Mid-size wagons
6. Low-priced full-size sedans (Ford, Chevrolet. Piymouth, and Dodge).

Note: Dodge moves to the risner priced full-size group $19 / 0$ and earlier. For some reason, transportation charges on the AMC Anbossador are high priced full-size rates.)
7. Low-priced full-size wagons
8. High-pric $=$ full-sizf sedans and wagons (all full-size cars not in grcup 6 or 7 and not luxury cars.
y. Specialty subcempact cars (like Hiustang II).
10. Luxury cars (Cadillac, Lincoln, Imjerial, Thunderbird, Packard).
11. Corvette (same rate applied to Shelby Cobra).

Table A1-23, page Al-103 presents the estimates for the classes for domestic cars by state in 1972 (excluding specialty subcompacts which were not sold in 19i2). These charges were assigned to each car (according to its classification) and sales weighted averages by the five domestic size clas:ies were computed for each state.

Given that we only have an estimate of foreign subcompact transportation charges, once the estimates by state were completed (as discussed above), no furtner processing was necessary. The estimated foreign imported subcompict car transportation charges by state for 1972 are shown in Table Al-24, pane Al-105. After having reviewed these numbers and consulted with Automobile invoice Service, it was determined that these estimates were biased downard, primarily because no transportation charge increases for foreign imports were repcred from 1967 to 1972 while transportation charges on domestic cars had risen dramatically.

Therefore, these numbers were uniformiy scaled upward by the ratio of U.S. average domestic subcompact transportation charges in 197 ? over U.S. average imported subcompact transportation charges for 1972 (or by 78 over 59). Transportation charges Livetate for foreign compacts and foreign luxury cars were estimated $\mathrm{i} y \mathrm{ad} \% \mathrm{ig}$ the difference between these transportation charges for domestic cars and dome. icic subcompacts by state to the estimated imported subcompact charge for the state. For the time serios estimates, the foreign freight charges were set tqual to the correspo::ding estimated domestic rate.

In estimating the time series data for domestic auto transportation changes by transportation class, numerous sources were used and the resulting estimates were a health:y mix of limited informotion and reasoned judgement. For 1972 through 1974 we were abls to constr:": sales weighted estimates basct. on the city data supplied to is by Auto Invoice Service (see above). For the sarlier years, the information used is much more limited.

In constructing the transportation estimates fo: 1972 , we calculated the ratio of specific city data to the national average for a selected subset of cities for which we had transportation charges data for the earlier years. In 1972, New York City :ransportation charges are 97.26% of average U.S. transportation charges. Given this ratio,
and transportation charges data for New York by make and model for 1967 through 1970, the transportation charges by class were computed for New York City from 1967 to 197C and divided by 0.9726 to form the average U.S. estimate.

Selected data was aviilable for earlier years for New York and other cities and given the Ford and Chevrolet estimates for the West Coast (1956 to 1970) which vere supplied to us by the futo Invoice Service, the remaining transportaiion charges back to 1956 were estimated using constant ratios (based on the 1972 calculations) and a substantial amount of judgemerit, since the various estimates lbased on the various ratios) of the U.S. average transportation charges were not consistent. For 1955 back, the 1956 rates were held constant.

The results of these calculations are shown in Table Al-25, page Al-106. While the earlier data (prior to 1967) are estimated by rather imprecise methods, we believe that better estimates would (for our purposes) be too costly to construct for whatever potential gain in accuracy is achievable.

A1.4.6 PURCHASE TAXES

From the plethora of tax rates levied at both the local and state levels we require some 'averaç' rate for the U.S. over time
and for states in 1972. The state and local tax rates on new auto purcinases from 1963 to 1974 by state, were collected from various issues of Automotive Fleet magazine. I/ Interpolation of data prior to 1963 was done by takirg the 1963 value as the base, and increasing or decreasing it in proportion to the movement of the general sales tax rate for the state or local area concerned. ?/ (These rates appear in Table Al-26, page Al-107, as TXRSAUTOY72 ar.d TXRLAUTOY72).

The "total" rate by state was then computed two ways. First, the state and local rates were simply summed (TXRAIITOY72). Second the local taxes were weighted by the percentage of total local administrarive units levying the tax $\underline{3}$ and added to the statewide rates. A correction was also made in cases where the taxes are not additive. The results of these computations also afpear in Table A?-26 as TXRLWTDAUTOY72 and TXRWTDAUTOY72. These weighted averages were felt to be more appropriate and so ivere used, altho:gh the differences are minor.

The J.S. total rate for state and local taxes was computed by weighting the rates for each state by its share of total new car registrations in each year and summing across states. This was done for both the weighted and unweighted versions of taxes. These variables appear in Table Al-27, page Al-109. Again, the weighted average was felt to be the

I/ "State Automobile Insurance, Registration and Tax Facts," Automotive Fleet, various issues, 1963-1975.

2/ State and Local Taxes--An Information Report, U.S. Advisory Commission on Intergovernmental Reldtions. Table 5, State General Sales Tax Rates as of January 1, 1952 through 19e8.
3/ Ibid.; State and Local Sales Taxes, Tabble 18, Local Retail Sale Taxes by State, Selected Features, p. 52.
most appropriate (TXRWTDAUTO).

A1.4.7 END OF YEAR STOEK

For model purposes measures of the stock of cars in operation a= the end of the year are needed, sinct. our analysis is in calendar year terms. A mid-year stock estimate, for the first of July each year, is compiled by R.J.Polk and Co. Ir. the time-series work a simple moving average was taken:

OPMVUAYEND $_{t}=\left(\right.$ OPMIUAY $_{t}+$ OPMVUAY $\left._{t+1}\right) / 2$
where:
OPMVUAYEND $_{t}=$ End of Year Stock, Year t.
OPMVUAY $_{t}=$ Mid-Year Stock, Year t.
These year-end stock estimates appear in Table $\{1-28$, page Al-110, along with the basic data for OPMVUAY and new registrations (OMYUANR).

End of year stock by state for 1972 could not be estimated in this fashion because we lacked mid-year stock by state for 1973. Therefore, the national time series data (estimated above) was analyzed by regression analysis. In doing this the end of year stock figures were adjusted by half of total new registrations in order to allow (in the next step) for the sales variations that exist between states. The constructed variable is termed YEND-R, where:

YERD-R $=$ OPMVUAYEND - 0.5 OMVUARR
OMVUATR = U.S. Hew Car Registrations
The estimated relationship for this variable was:
YEND-R $=0.961122$ * OPMVUAY (53j. 8)
$\bar{R}^{2}=.999$
S.E.E. $=.56152$
D.K. $=1.712$ Period: 1948-73

We then estimate end-of-year stocks by state using:
OPMVUAYEND72E ${ }_{j}=0.961122$ OPMVUAY72 $_{j}+0.5$ OPMVUANRY72 $_{i}$
where:
OPMVUAYENDY72E ${ }_{j}=$ Estimated 1972 End of Year Stock, State j.
OPMVUAY72 ${ }_{j}=$ Mid-Year 1972 Stock, State j
OMYUANRY72 $_{j}=1972$ New Car Registrations, state j.
These estimates were then summed across states, and scaled by the U.S. ratio to this sum so as to yield consistency with the U.S. total:

51
SCALE $=$ OPMVUAYEFID $_{1972} / \sum_{j=1}^{5}$ OPNVUAYENDYT2E 2

$$
\left.\begin{array}{l}
(j=1, \ldots, 51 ; 50 \text { states flus hashington, D.C.) } \\
\text { OPMVUAYENDY72 } z_{j}=(\text { SCALE }) *(\text { OPMUAYENDY72E } \\
j
\end{array}\right)
$$

The adjusted estimates, as well as OPMVUAY72 and OMVUNRRY72, are presented
in Table Al-29, page Al-111.

A1.4.8 STOCK BY VIMTAGE AHD SIZE CLÂSS

Having estimated year-end cars in operation by the method described above, we are faced with three problems: decomposing this stock into its vintage-year comnosition for the total stock; corstructing series for the number of cars in operation at year-end for domestic and foreign cars disaggregated by size class; and pstimating the vintage year composition of these disaggregated stock series. These various stock series are required to be consistent with the total cars in operation and with each other in the following ways:

1. The sum of the vintage year components of the stock over all vintages must equal totai erd-of-year stock.
2. The sum of year-end stocks for domestic and foreign stocks disaggregated by size class across all domestic and foreign size classes must equal total end-cf-year stock.
3. For eacn vintage year component, the sum of the components of the disaggregated stocks across all donestic and foreign size clisses must enual the correspending vintage year component of the total stock.
4. The sum over all vintages of the vintage year components of the stocks disaggregated by domestic and foreign size classes must equal total stock disaggregated by domestic and foreign size classes.

Before stating these constraints in algebraic form, let us define
the following symbols:
$v_{t}=$ Total number of cars in operation at the end of year t
N_{t} = Total numbers of new cars registered during year t
$S_{t}=$ Tctal number of cars scrapped during the year t
$k_{z}^{c}=$ Number of cars of ciass $c(c=1, \ldots, 8)$ in operation at the end of year
$N_{t}^{c}=$ Number of new cars registered of class $c(c=1, \ldots, 8)$ during year t
$s_{t}^{:}=$Number $c f$ cars of class $c(c=1, \ldots, 8)$ scrapped during year t
$K V_{i, t}=$ Total number of cars of vintage $i \quad(i=0,1, \ldots, 20)^{1 /}$ in operation at tics end of year :

The four consistency constraints stated above can be expressed in terms
of the symbols defined as follows:

1) $K_{t}=\sum_{i=0}^{20} \mathrm{KV}_{i, t}$
2) $k_{t}=\sum_{c=1}^{8} K_{t}^{c}$
3) $\mathrm{KY}=8$ $\sum_{c=1}^{8} K V^{c} \quad$ for $i=0, \ldots, 20$.
4) $K_{t}^{c}=\sum_{i=0}^{20} K V_{i, t}^{c} \quad$ for $c=1, \ldots, 8$.

I/ We are assuming that no cars older than 20 years old are in operation, which is not strictiy true but not an unreasonable cutoff point given that we must assume a finite iife.

While R.L. Polk and Co. have prepared annual estimates of total cars in operation by vintage since the early $1950^{\prime} s$, they have not prepared estimates disaggregated by size class until 1975. I/ We could have used the R.L. Polk and Co. estimates of cars in operation by vintage year for the total stock, but we chose not to take this approach for the following reasons:

1. R.L. Polk and Co. state that the earlier data is inconsistent conceptually (includes a large number of light trucks) with the more recent data. While they have attempted to clean up the total stocks, they have not gone back and adjusted the vintage components.
2. The earlier data on vintage year composition of the totai stock, again according to R.L. Polk and Co., is much less reiiable than the more recent data.
3. If we used these data, we would have to deal with the messy (and irreievant for our purposes) problems of "lemon vintage years" and "good vintage years". For example, the 1958 and 1959 cars exhibited a higher scrappage rate than would be expected throughe ut the period (given annual scrappage and their age in any given year).
4. We would still have to come $u j$ with an alternative approach for the disaggregated stocks.

Before indicating how ve implemented our solution to estimating the stocks disaggregated by vintage and size class, let us outline the nature of our solution. First, let us define various "survival probabilities" as follows:

1/ The stock was disaggregated by nameplate, but this disaggregation was not useful to us.
(a) $P_{i}=$ probability
that an i year old car will survive until the end of the current year given that it has survived until the end of the previous year $(i=0,1, \ldots, 20)$
(b) $a_{i}=$ protability
that an i year old car will not survive until the end of current year given that it has survived until the end of the previous year $(i=0,1, \ldots, 20)$
(c) PSE $_{i}=\prod_{j==?}^{i} P_{j}$
for $i=0,1, \ldots, 20$
$=$ frobability of a car surviving until the end of the i th year oi its life
(d) PDE $_{i}=q_{i}$
for $i=0$
$=\left(q_{i}\right)\left(\right.$ PSE $\left._{i-1}\right) \quad$ for $i=1, \ldots, 20$
= probability of a car being scrapped during the i th year of its life
(e) PDEC $_{i}=\sum_{j=0}^{i}$ PDE $_{j}$
for $i=1, \ldots, 20$
$j=0$
$=$ probability of a car being scrapped by the end of the ith year of its life
$=1=$ PSE $_{i} \quad$ for $i=0,1, \ldots, 20$
The reader should note that the last three probabilities defined above (PSE $_{i}$, PDE $_{i}$, and PDEC $_{i}$) are survival and scrappage probabilities based
on current year "transitional" probabilities (p_{i} and q_{i}). Therefore, two interpretations of the last three probabilities are possible. Using PSE $_{i}$ as an example:
(1) PSE $_{i}$ could be interpreted as the probability tiat a car sold this year will be in operation \because years from now.
(2) PSE $_{i}$ could be interpreted is the probability that a car sold i years ago will still be in operation at the end of the current year provided that the D_{i} 's have seen constant for the lasi i years. Since constant p_{i} 's would require constant scrappage rates by vintage over time (which is not a viable assumption) we cleariy have to modify the above definition of the p_{i} 's to allow variation over time.

However, let us first consider how we can make use of these "survival" probabilities in defining stocks disaggregated by vintage and size class which satisfy the four consistency constraints. Using the second interpretation of $P S E_{i}$ given above (namely that $P S E_{i}$ is the probability that a car sold : years ago will still be in operation at the end of the current year), if N denotes the number of new registrations, we can define the various stock components as follows:
(1) $K V_{i, t}=$ PSE $_{i} * N_{t-i}$ for $i=0,1, \ldots, 20$.
(2) $K V_{i, t}=P S E_{i}$ * $N_{i=-i}$ for $i=0, \ldots, 20$
(3) $K_{t}^{c}=\sum_{i=0}^{2 C} K k_{i, t}^{c} \quad$ ior $c=1, \ldots, 8$

If the P_{i} 's have bsen constant over the last 20 years (which we admit is an unrealistic assumption and wili be modified later in this section), then it will be true (if we reirterpret the p_{i} 's as the fraction of i jear old cars whisn will survive until the end of the current year given that they survived until the start of the current year) !/ that the sum of the $K V_{i, t}$'s over i will equal $K_{ \pm}$, or:

$$
\text { (4) } K_{t}=\sum_{i=0}^{20} K V_{i, t} \text {, and }
$$

since the sum of new registrations over all classes in any year equals total new registrations, or:
(5) $N_{ \pm-i}=\sum_{c-i}^{8} N_{r-i}^{E} \quad$ for $i=0,1, \ldots, 20$.
it follows that:
(6) $K_{t}=\sum_{c=1}^{8} K_{i, i}^{c} \quad$ for $i=0,1, \ldots, 20$.
(7) $K V_{i, i}=\sum_{c=1}^{8} K V_{i, t} \quad$ for $i=0,1, \ldots, 20$.

IT Even if we don't make this interpretation of the p_{i} 's, relationship (4) will hold in an expected value sense.

Therefore, by defining a set of P_{i} 's and corresponding PSE ${ }_{i}$'s, we car. construct stock series disaggregated by vintage and size class which satisfy the four consistency constraints. We will also relax the constraint of constant p_{i} 's over time, but since the procedure requires the definition of "normal" P_{i} 's, let us first review how these series were constructed. Using the table of cars still in operation by mode? year published in the 1975 Automotive News Almanac (obtained from R.L. Polk and Co.)I/, we calculated the fraction (probability) of cars which survived from July to July by vintage year. Thers are sufficient data in this table to construct 5 complete series of the following form.

Period of Life
EST 1
--
--
--
--
--
--
-

EST 5
AVR (1 to 5)
6-18
18-30
30-42
42-54
54-66
-..

where period life refers to months after end of model year. The AVR refers to an average of the five estimates. The averages of these data were then converted from mid-year to end-of-year fractions (probabilitits) as

I/ The table gives registra*ions by year model for 1959 (model years 1940-59), 1960 (1941-60), etc. through 1974 (1955-74).
follows:

$$
\begin{aligned}
& P_{1}=A V R_{6-18} \\
& P_{2}=\left(A V R_{6-18}+A V R_{18-30}\right) / 2 \\
& P_{3}=\left(A V R_{18-30}+A V R_{30-34}\right) / 2 \text { etc. }
\end{aligned}
$$

where $A V R_{i-j}$ is the average fraction surviving from i to j months after the end of the model year (given that the car survived until the beginning of the ith month after the end of the mocel year).

The value for P_{0} was abritrarily set $a=0.998$ (0.2% of new cars do not survive until the end of the year in which they are sold). The results of the calcuiations are shown in Table Al-30, page Al-112. The values for P_{12} throsgn $P_{2 C}$ are equal to a rounded average of the data computed via the formulas given above for P_{12} to P_{14} (which is as far back as the actual data goes). The original data was fluctuating around the 0.7 talue for these three years. The $P S E_{i}$ series falls to $0.01{ }^{\circ}$ by the enc of the 20th year and $P S E_{21}$ is zero (or q_{21}) since we are assuming no cars more than 20 years old are on the road. It is interesting to note that the year with the highest probability of a car being scrapped ($P D E_{i}$) is the loth year with the 11 th and 9 th years being the next highest.

Maving obtained the estimates of "normal" vintage year survival (scrappage) probabilities (shown in Table Al-30), we must now define "actual" survival (scrappage) probabilities for each year t which satisfy the four consistency constraints for each year.

Since the solution involves first finding a set of probabilities which satisfy the first constraint for the first year $(:=1)$ and then modifying these initial probabilities in each subsequent year, let us consider the problem of finding a set of probabilities which satisfies the first constraint for the first year, or find PSE $\mathcal{E}_{i, 1}$ such that, for, the first year stock, K_{p} :
(8) $K_{j}=\Sigma\left(\right.$ PSE $\left._{i, j}\right) *\left(N_{1-i}\right)$
(from definition (c))
where:
(9) PSE $_{i, 1}=\prod_{j=0}^{i} P \quad$ for $i=0,1, \ldots, 20$
(from definition (c))
(10) $P_{i, 1}=1-\left(q_{i}\right)\left(r_{1}\right)$
(from definitions ía) and (b))
W' are making a strong assumption in constructing the first year surviv:.
pribabilities; ramely, that the survival probabilities have been constant
and equal to first year survival probabilities ($P_{i, p}$ for $i=0,1, \ldots, 20$) for the last 20 years. However, this assumption is necessary to estimate a value for γ. and is relaxed for subsequent years.

The constant y can be thought of as a scrappage adjustment fiactor. If scrappage is equal to the "normal" scrappace rates $\left(a_{i}, i=0\right.$, 1....,20.) then γ will equal one. If scrappage is righer thar the "normal" rate, then γ will be greater than one, while, if scrappage is less than the "normal" rate, γ will be less than one. We are assuming that changes in scrappage rates are proportional to the fraction normally scrapped $\left(q_{i}, i=0,1, \ldots, 20\right)$ i.e. a scūlar change across all rates. This assumption means that when the scrappage rates are, for example, above the nomal rate, that the scrappage rate increases by more in absolute termis for cars which "normally" have a higher scrappage rate.

To obtain a solution for Y, we rewrite the formula for $P S E_{i}$,
using (9) and (10), above, as follows:
(11) PSE $_{i, 1}=\prod_{j=0}^{i}\left(1-q_{i} r_{1}\right)$

Then substituting (11) into (8), we obtain:
(12) $k_{j}=\sum_{i=0}^{20} \sum_{i=0}\left(1-q_{j} r_{1}\right) * N_{1-i}$

Now, by definition, scrappage is equal to the "given" (defined) scrappage from the survivilis 21 year old cars plus the difference betweer the

$$
A 1-45
$$

cumulatiye total of new registration over 20 years and the actual existing stock.

Thus:

(13) $S_{1}=\left(\right.$ PSE $\left._{20,1}\right)\left(i_{i-21}\right)+\sum_{i=0}^{20} N_{1-i}-K_{1}$

$$
=\left(\text { PSE }_{20,1}\right)\left(N_{i-21}\right)+q_{0} \gamma_{1} N_{1}+\sum_{i=0}^{20} N_{1-i}^{*}\left(1-\prod_{j=1}^{i}\left(1-q_{j} \gamma_{1}\right)\right)
$$

- where $q_{0}{ }^{\gamma_{1}} N_{1}$ is the first year scrappage.

Howeser, from defirition (3), PDEC. , we can also write to tal scrappage as:

$$
\text { (14) } \begin{aligned}
S_{1}= & \left(\text { PSE }_{20,1}\right)\left(N_{1-21}\right)+\gamma_{1} \text { PDEC }_{i, 1} * N_{1-i} \\
= & \left(\text { PSE }_{20,1}\right)\left(N_{1-21}\right)+q_{0} \gamma_{1} N_{1}+\sum_{i=1}^{20} \gamma_{1} P D F_{i, 1} * N_{1-i} \\
& \text { (again, employing definitian (e)) }
\end{aligned}
$$

Comparing (?3) and (14):

$$
\text { (15) } \gamma_{1} *\left(P D E_{i, l}\right)=1-\prod_{i=1}^{i}\left(1-q_{i} \gamma_{1}\right) \quad(i=1, \ldots, 20)
$$

But definition (d) states that

$$
\gamma_{1} P D E_{i, 0}=\gamma, q_{i} \text { PSE }_{i-1,1} \quad(i=1, \ldots, 20)
$$

Therefore

$$
\text { (16) } 1-\prod_{i=1}^{i}\left(1-q_{j} \gamma_{1}\right)=\gamma_{i} q_{i} P S E_{i-1,1}
$$

and therefore

$$
\text { (17) } S_{1}=\left(\text { PSE }_{20,1}\right)\left(N_{1-21}\right)+q_{0} r_{1} H_{1}+\sum_{i=1}^{20}, q_{i} \text { PSE }_{i-1,1} * N_{1-i}
$$

Collecting γ_{1} terms, and reordering (noting that γ_{1} can be moved outside the summation):

$$
\text { (18) } i_{1}=\frac{S_{1}-\left(\text { PSE }_{20,1}\right)\left(N_{1-21}\right)}{q_{0} N_{1}+\sum_{i=1}^{20}\left(q_{i}\right)\left(\text { PSE }_{i-1,1}\right)\left(N_{1-i}\right)}
$$

Similarly y_{2} can be obtained as follows:

$$
\gamma_{2}=\frac{S_{2}-\left(\text { PSE }_{20,1}\right)\left(N_{2-21}\right)}{q_{0} N_{2}+\sum_{i=1}^{20}\left(q_{i}\right)\left(r S E_{i-1,1}\right)\left(N_{2-i}\right)}
$$

The values for $P_{i, 2}$ and PSE $_{i, 2}$ (for $i=0,1, \ldots, 20$) are given by the following:

$$
\begin{aligned}
P_{i, 2} & =1-\left(r_{2}\right)\left(q_{i}\right) \text { for } i=0,1, \ldots, 20 \\
P^{\prime} E_{3,2} & =P_{0,2} \\
\operatorname{PSE}_{i, 2} & =\left(P_{i, 2}\right)\left(\text { PSE }_{i-1,1}\right) \text { for } i=1, \ldots, 20 .
\end{aligned}
$$

The corresponding general expression for $\gamma_{t}, P_{i, t}$, and $P S E_{i, t}$
$(t=2, \ldots)$ are as follows:

$$
\begin{aligned}
& r_{t}=\frac{S_{t}-\left(\text { PSE }_{20, t-1}\right)\left(N_{t-21}\right)}{q_{0} N_{t}+\sum_{i=1}^{20}\left(q_{i}\right)\left(P S E_{i-1}, t-1\right)\left(N_{t-i}\right)} \quad(t=2, \ldots) \\
& P_{i, t}=1-\left(r_{t}\right)\left(q_{i}\right)(\text { for } i=0,1, \ldots, 20, \text { and } t=2, \ldots) \\
& \operatorname{PSE}_{0, t}=P_{0, t}(\text { for } t=2, \ldots), \text { and } \\
& P_{S E}, \ldots=\left(P_{i, t}\right)\left(\text { PSE }_{i-1, t-1}\right)(\text { for } i=1, \ldots, 20, \text { and } t=2, \ldots) .
\end{aligned}
$$

These scrappage probatilities (fractiens) satisfy the logical constraints that once a car has been scrapped it stays scrapped (no rebirths) and that for a car to is scrapped during the current year it must have survived until the beginning of the current year.

Table Al-31, page Al-1i3, presents estimates for γ_{t} (shown in the table under the smbol SPNEADJ) and the PSE $_{i, t}$ (shown in tabie as SPSE i, for $i=0,1, \ldots, 20$) for 1953 through 1974. Examiring SPNEADJ, we can see :hat the low post W'W II scrappage rates carry over into 1953 and 1654, then SPHEADJ rises sharply for 1955 through 1957 which were strong new car sales years, falls sharply in the 1958 recession, climbs siowiy through 1965, fiustuates around a value of one from 1965 through 1973 (increasing in strong new car sales years), and falis sharply in the 1974 recession.

Cars in operation at year-end by size class are computad as I/ $K_{t}^{\varepsilon}=\sum_{i=0}^{20}\left(\right.$ PSE $\left._{i, t}\right)\left(N_{t-i}^{e}\right)($ for $c=1, \ldots, 8)$
The results of this calculation are shown in Table Al-32 page Al-1i6. Table Al-33, page Al , shows these stocks aggregated in the five major classes (total subcompacts, total compacts, domestic mid-size cars, domestic mid-size cars, domestic full-size cars, and total luyury cars).

A1.4.9 USED CAR PRICES

Included in the model is an analysis of the used car market. This feeds back into the rest of the model by affecting scrappage via used car prices. The data we require are prices by vintage and sizeclass. However, the used car market is the worst documented segment of the U.S. auto industry. Thus a considerable amount of work was required. Two series are available which measure used car prices: (1) the consumer price index (CPI) for used cars; and (2) the Automotive News wholesale auction price (PUSEDW). The CFI is based on a limited sampling of types of used cars (primarily ford and Chevrolet mid-size to full-size cars which isn't a bad choice if you are going to have a limited sample) in the two to five year old range.

IV While total new registrations are published from 1921 to 1974, the size class breakout is only available from 1948 to 1974. The share for each of the 8 size classes from 1921 to $i 947$ was set equal to its 1948 to 1950 average value.

Despite any limitations to the CPI, it is mure informative than the Automotive News kholesale auction price (PUSEDW) since the latter price varies with the mix and vintage of cars fassing through this market. In a strong new car sales year, the wholesale auction market will do a large volume in recent vintage new car trade-ins while, in a slow new car sales year, relatively few of the newer vintage cars will enter the wholesale auction market.

Two other sources we consulted were the Red Book 1/ and the Used Car Guide of the NADA. 2/ In order to get as full a series of used car prices as possible we used selected cars in each class. Since prices of used cars by vintage vary throughout the year we used the July pricing guides wherever possible. he thus collected data from the N.A.D.A. Used Car Prices for a sample of domestic and foreign cars within each of the five size classes annually from 1958 to 1974.

There are two factors which could affect the reliatility of the data. First our sample of cars was selected judgementally and for completeness of car type back as far as possible. Thus the sample is not random and may not be fully representative of all used cars sold. Second the dealers may or may not report their sales and prices accurately. Some people have suggested that there may be an incentive to report slight-

I/ OFficial Used Car Valuations published by National Market Reports, Inc., Chicago, 117.

2/ Used Car Prices, published by the National Automobile Dealers Association,
ly inflated retail prices in orjer to "firm up" a price of some cars. In any event we have chosen to take the numbers as given and adjust them only where there are obvious jumps in the data.

Table A1-34, page A1-118, lists the cars in each class for which we gathered data. For each year and gach cur in the sample the used car guide lists the mean wholesale and retail prices of a zero year old car through a seven year used car if that car existed seven years previously. Thus, for each used car in each year there are eight pieces of data, one corresponding to each vintage price from the present back to seven years old.

We used the average reported retail price inclusive of a common set of options. For full size domestics, for example, the options include automatic transmission, power brakes, power steering, and air conditioning (an PM radio is consicierer standard). In the most recent years the used car prices reported included these options. However, as one looks at the older editions of the particular car the average prices of those options must be added to the reported used car prices.

The prices of used cars in the analysis are net of any sales taxes or registration fees, since we are looking to explain relative movements in that market, rather than levels. A rinal point to be noted is that we used the Eastern Region editions of the used price guides. The prices in the other regions generally differ by a constant amount, and move in the

same direction as those in the Eastern Region.
In some cases where tue car models came into existence during the sample period we had to splice the price series of one car with what seemed to be its closest predecessor in terms of basic physical specificaiions. In other cases such as in certain subcompacts and compacts, we have put in the series as much $\exists \mathrm{s}$ it exists and have not attempted any splicing. In constructing the saies weights for averaging purposes, where the car did not exist, the remaining cars and sales in the class were used to derive the share weights.

The annual used car price data for the cars snown in Table Al-34 were matched with the corresponding data in the new car file. The used car prices (vintage 1 to 7) were divided by the new car pricc (defined as base price + vilues of installed options + transportation charges) generating ratios equal to the value of a 1 to 7 year old car relative to a "comparable" new car.

The individual car ratios were then aggregated (using the weights also shown in Table Al-3f) into average ratios by size class for donestic, foreign, and combined jomestic and foreign autos. Since the sample size was relatively small, only the combined domestic and foreign ratios by size were used for the purposes of model estimation.

The end result of this procedure is a set of time series of data for each of the five size classes from 1958 to 1974 on the price of a
used car of vintage 1 to 7 years old relative to the current year's average new car price on the same class. For example, the full-size used car price relative can be written as follows:

$$
\begin{aligned}
\text { PUIFD }_{t} / \text { PNFD }_{t}= & \text { Price of a one year old full-size car (PUIFO }) \\
& \text { relative to the price of a new full-size car } \\
& \left(P N F D_{t}\right) \text { where } t=1958, \ldots, 1974 .
\end{aligned}
$$

$$
\begin{aligned}
& \text { PU2FD }_{t} \text { /PNFD }_{t} \\
& \text { PU3FD }_{t} / \text { PNFD }_{t} \\
& \text { PUAFD }_{t} \text { /PNFD }_{t} \\
& \text { PU5FD }_{t} / \text { PNFD }_{t} \\
& \text { PU6FD }_{t} \text { PNNFD }_{t} \\
& \text { PU7FD }_{t} / \text { PNFD }_{t}
\end{aligned}
$$

$=$ Same type of ratio for 2 to 7 year old fullsize car prices relative to the new full-size price for $t=1958, \ldots, 1974$.

The values for these price relatives for full-size cars are shown for illustrative purposes in Table Al-35, page Al-119. The data for the other four size classes are similar except that the first year decline in price is substantially less for the smaller classes (particularly subcompacts and compacts).

To make use of all this price information but still keep the modeling effort manageable, it is necessary to reduce this array of price information to one or two data series. To accomplish this, one has to specify and estimate a functional relationship among the relative prices.

After analysing the price relatives shown in Table $11-35$ as well as the price relatives for the other size classes, we adopted the following approach:
(1) Develop equations for the price of a one year old car relative to the new car price for each class (See Table Al-35, page Al-120, relatives by size class), and
(2) develop a one parameter functional relationship between the one year old price relative and the 2 to 7 year old price relatives.

The first concerns the estimation of behavioural relationships, and is therefore treated in detail in Appendix A2. The second part is handled by estimated identity relationships, and is therefore included here. After experimenting with a number of possible function forms, we decided to adopt an "exponential decay" type model for the relationship between the one year old price relative and the 2 to 7 year old price relatives. The basic model is as iollows (using domestic full-size cars as an example):

$$
\frac{\mathrm{PIVFO}_{t}}{\mathrm{PUlFD}_{t}}=\exp \left\{-(\therefore-1) \lambda F D_{1} t\right\} \quad \text { for } i=2, \ldots, 7.1974
$$

To implement this model, we were therefore required to estimate values of λ for each of the 5 size classes ($S T, C T, M D, F D$, and $L T$) for each year (1958,..., 1974), which involved running 90 ragressions. The results of these regressions were excellent for all classes in all years (the lowest \bar{R}^{2} obtained in the 90 equations was 0.894). Th.e estimated values
for the λ 's are shown for each of the sice classes in Table Al-37, page Al-121. Table $A 1-38$, page Al-122, presents estimates of the two to seven year old price relatives for full-size domestic cars using the estimated $\lambda_{F D}$ from Table Al-27 and the one year old price relative from Table Al-36. As can be seen by comparing Table Al-35, and Table Al-33, the estimates of $\lambda_{F D}$ do very well in reproducing the original data on the two to seven year old price relatives. While we nad origindlly planned to model the λ 's (the PU/NADT $s c, s c=S T, C T, M D, F D, L T$ in Table Al-37) the movements over time for these decay factors exhibitec no relacionship to any reasonable set of variables. Therefore, they are specified exogenously.

We have estimated three average price measures. First the WEFA average one year old price, PUSEDITT67, is a weightnd average of the one year old prices, using 1967 new registrations as weights. This may be compared to the consumer price index (also based on 1967) as illustrated in Table A1-39, page A1-123. A regression equation demonstrates the close correspondance.
in $(C P I)=\underset{(0.52)}{0.192142}+\frac{0.57290}{(12.13)}$ ir. (PUSEDITT67)

$$
\bar{R}^{2}=0.925 \quad S E E=0.0217 \quad \text { D.H. }=2.07
$$

$$
\text { Period of Fit: } 1962-1974
$$

The second is the WEFA average traded used car price (PUSEDR).

This is computed as a weighted average by vintage ard by class. The requisite identities are therefore quite complex, and are detailed in Table Al-40, page $\hat{\mathrm{f}} \mathrm{i}-124.1 /$ The definitions are given in the following table Al-41. This average can be compared to the ANWP figure and as seen on Table Al-39, page Al-1:3, the correspondance is close.

Finally, the waighted average price for an old car was also computed (PUOLD). Again, these computations are detailed in Table Al-40. While the calculations for PUOLD and PUSEUR are intricate, the caraful reader should find them largely self-explanatory.

A1.4.10 FAMILY UNITS BY STATE

For the cross-sectional analysis we require estimates of the number of family units ion each state. Census Bureau estimates of the number of families a.ld urelated individuals for 1972 by state are not available. These varialles wire interpolated using ratios of the number of families and unreizited individuals by state in 1970 to resident populatior. by state in 1970.

$$
\begin{aligned}
& R F / P_{j}=\frac{\text { NCFY70 }}{\mathrm{NPRY}_{j}} \\
& \mathrm{RU} / \mathrm{P}_{j}=\frac{\mathrm{NPRUY}^{2} O_{j}}{\mathrm{NPRYYO}_{j}}
\end{aligned}
$$

1/ Trade-in proportions are taken from data supplied by Generai Motors Corpo:ation.

```
            NCFY72E }=(RF/\mp@subsup{P}{j}{}){{|PRY72 j
            NPRUY72E 
                            j}=(1,2,\ldots.,51) for 50 states plus Washington, D.C.
NCFY7O = number of families by state, 1970
NCFY72 = number of families by state, 1972
NPRUY70 = number of unrelated individuals by state, 1970
NPRUY72 = number of unrelated individuals by state, 1972
NPRY70 = resident population by state, 1970
NPRY72 = resident popilation by state, 1972
NCFY72E = number of families by state, 1972, unadjusted to total
NPRUY72E = number of unrelated individuals by state, 1972,
    unadjusted tu total
The resulting estimates by state were then forced to sum to the U.S. total for NCF and NPRU, for which 1972 census estimated do exist. This was done by multiplying each state estimated by the ratio of the census estimate for the U.S. total \(\left(\mathrm{NCF}_{52}\right.\), and \(\left.\mathrm{NPRU}_{52}\right)\) to the sum of the state estimates.
```

```
\(A D J F=\frac{N_{5} F_{52}}{51}\)
```

$A D J F=\frac{N_{5} F_{52}}{51}$
E NCFYI2E
E NCFYI2E
$j=1$

```
    \(j=1\)
```


NCFY72 $=$ number of families $2 y$ state. 1972, adjusted
NPRUY72 $=$ number of unrelated individuals by state, 1972, adjusted The final estimates are presented in Table Al-42, page Al-131. They preserve the 1970 relationships between families and unrelated individuals, and the resident population of each state. That is, for the purposes of interpolation the distribution of families by state in 1972 depends on the distribution of resident population by state as estimated ty the Bureau of the Census. The number of families by state depends on the census estimate of the total number of U.S. families for 1972 and the ratio of families to resident population in 1970. The same is true for unrelated individuals. SInce these ratios are relatively stable, this should be a reasomably reliable method of interpolating the 1972 data.

A.1.4.!1 CO:VSUMER PRICES BY STATE

A relative price inde\% by state is required as a deflator for the cross-sectional analysis. Measures of relative consumer price levels by state do not ordinarily exist. We thus had to estimate this series.

The general method was to apply the index numbers in irdex 4 of Table Ai-43, page $41-132$, to the appropriate metropolitan and non-metropolitan areas of states, and weight them by the population in these areas.

Index 4 is a price index computed from bujget data with fixed weights equal to the U.S. average quantities of items in the market basket for an urban family of four persons. It therefore measures only geographic wifferences in prices, and is a pure price index. These dara are for the fall of 1973, while what we require is an index for 1972. However, it may be argued that regional differences in price levels are stable enough to support the application of these price relatives to 1972. In anj case this index is the only one availible.

The first step in computing the index was to deri:e an index for the metropolitan area of each state, where metropolitan area is defined as the area inside SMSA's in that state. A price relativ. from Index 4 was assignea to each SMSA, or fraction thereof, in each state. The state SMSA index then becomes the weighted average of these price relatives for each state, where the weights are equal to the proportion of the state SMSA pcpulation in each SMSA.

$$
\begin{aligned}
& \text { PMET }_{i}=\sum_{i=1}^{n_{i}}\left(\text { HMET }_{i i_{i}}\right)\left(P_{i i_{i}}\right) \\
& \text { WMET }_{i j}=\frac{\text { POPMET }_{i j}}{n_{i}} \\
& \sum_{i=1}^{\text {POPMET }_{i j}}
\end{aligned}
$$

$j=(1,2, \ldots, 50)$ representing 50 states and Washington, D.C.
${ }_{i}=(1,2, \ldots, n)$
$n_{i}=$ number of SMSA's in STATE ${ }_{j}$
POPMET $_{i j}=$ population in SMSA $_{i j}$
$P_{i j}=$ price relative assigned to SMSA $_{i j j}$
In those SMSA's for which an index number did not exist in Table Al-43, the index number for the SMSA closest to it in location and economic character was used. The result of this calculation appear in the column market "Weighted SMSA Index" in Table Al-44, page Al-!33.

The second step in the derivation of this state index was to combine the state metropolitan index with the regional non-metrcpolitan index applicable to the state (also givan in Table Al-43), Here, the SMSA index was weighted by the proportion of state population in SMSA's while the non-metropolitan index was weighted by the proportion not in SMSA's.

```
\(\begin{aligned} \text { PCY72E }_{i}= & \left(W_{j}\right)\left(\text { PMET }_{j}\right)+\left(1-W_{j}\right)\left(\text { PMONMET }_{i}\right) \\ & n_{i}\end{aligned}\)
            \(\sum_{i=1}^{\text {POPMET }_{i j}}\)
                        \({ }^{P O P}\).
PCY72E \({ }_{j}=\) unadjusted state index
PNONMET \(_{j}=\) non-metropolitan price relative
```

$P O P_{j}=$ total state population
The results of tris calculation appear in the column marked "State Index" in Table Al-44.

The third step was to compute the price relative for the U.S. total. This was done by taking a weighted average of the PCY72E in which the weights are proportional to the state's share of U.S. total resident population in 1972.

This calculation incolves a partial test of the methodology used in generating the state index numbers. This average should equal 100.0 if we are to have a proper index of relative priees. In this particular case, however, we can expect the average to be somewhat lower than 100. This is because Index 4 really applies only to the urban population. By weighting the non-metropolitan index by ($1-w_{i}^{\prime}$), we have applied this index to the non-metropolitan non-urban population as well. Therefore the non-metropolitan index has more weight in our index than it had in computing the base for Index 4, and we can expect that PCY72E $_{52}$
will be below 100.0
This is in fact what happenea, thus verifying our expectations and lending credence to our methodology (PCY72E $_{52}$ came out to he 98.1). Such a result is desirable, since we are trying to compute a price index applicable to the whole of each state. In tneory we should include a separate index for the rural areas, but as none exists this is impossible.

The final step was to rebase the irdex by dividing by $P C Y 72 E_{52}$. The index then became:

$$
\mathrm{PCY}_{2} 2_{j}=\frac{\mathrm{PCY}^{2} 2 \mathrm{E}_{i}}{\mathrm{PCY}_{i} \mathrm{E}_{52}}
$$

$$
j=(1,2, \ldots, 52)
$$

The results are shown in Table Al-44, in the column marked "State Index Rebased".

A.1.4.12 INCOME DISTRIBUTION BY STATE

Since we hypothesized that income distritution would affect the size and composition of the desired stock, income distritution data by state were required. However, these were not available for 1972. We experimented with two series: the percentage of families with incomes over $\$ 10,000$ in 1972 (PER10+Y72), and the percentage cever $\$ 15,000$ (PER15+Y72). These data were generated using the following estimated equà-
tions:

```
PER10+Y70 = - -12.5437 (2.53) + \underset{(19.3)}{4.23S18 (YPSP3Y70/FM}
    -23.5547 DUMDC -2.72981 NETTY7O/FM
    (2.16) (0.65)
\overline{R}}\mp@subsup{\overline{2}}{2}{=.915 S.E. = 2.8% D.W. = 1.270
Period of Fit: Cross Section - 50 States, Washington, D.C.,
    U.S. Total.
    PER15+Y70 = - -13.4602 + (4.86) + (25.06719 YPSP3Y70/FM
        -3.94634 DUKDC -8.17623 NETTY70/FM
        (0.65) (3.50)
R'2 =.942 S.E. -1.6053 D.W. = 1.618
Period of Fit: Cross Section - }50\mathrm{ States, Washington, D.C.,
                            U.S. Total
    PER10+Y70 = percentace of families with incomes over $10,000
    by state, 1970
    PER15+Y70 = percentage of families with incomes over $15,000
    by state, 1970
    YPSP3Y7C/FM = permanent disposable income per family, three
                                    year weights, (3,2,1) by state, 1970
    NETTY70/FN = total employment per family, by state, 1970
    DLMDC = dummy for Washington, D.C.
```

As one would expect, bcth PER10+ and PER15+ are a positive function of permanent disposable income per family. The negative sign on total sm-
ployment per family may actually be due to a low wage rate. If the wage rate were low enough, it would cause a higher rate of employment per family as more family members are forced to seek work in order to support it, or are forced to remain in the family because they can't afford to move out on their own. In places where this is true the percertage of families with high incomes would probably be lower even though the employment rate per family were higher.

The observation for Washington D.C. Was dummied out because the income distribution variable is a n!zce of residence concept, while the income variable is a place of work concept. Since most of the more highly paid income earners do net live in the city, the income distribution is tov low given the average income per family earned there.

These functions were actually used to project the change in PERIO+ and PER15+. They were evaluated using 1972 values for the independent variables, and the difference between these 1972 estimates ano the estimates given by the equations when using 1970 data was added to the actual 1970 values. This sum then became the estimated value for 1972.

$$
\begin{aligned}
& \text { PER10 }+Y 72=\text { PER } 10+Y 70+(\text { PER10 }+Y 72 E-\text { PER10 }+Y 70 E) \\
& \text { PER15 }) \\
& 772=\text { PER15 Y Y } 70+(\text { PER15 }
\end{aligned}
$$

(where the variables with the "E" on the end are estimates from the equ. tions. Using estimates of the change instead of estimated levels reduces the protable errors).

The data gathered by this procedure is given in Table Al-45, page Al-135.

A.1.4.13 NONGAUTO TPAVEL

Despite much expeinmentation the only 'transportation system characteristic' variable that significantly affected desired auto stock was the series for mean; of travel to work, non-auto (MTWiNA). We therefore report the data construstion for this measure.

The data on means of travel to work exist only for the census years 1960 and 1970. For purposes of interpolating the non-auto component of these data into a complete time series, NTWHA was split into two variables.

NTWNAPT = persons travelling to work via non-auto public transportation

MTWINAOTH $=$ persons travelling to work by other non-auto means
MTWHA $=$ MTWHAPT + MTWNAOTH
The MTWILAPT time series was derived by interpolating and extrapolating its relationship to revenue passengers carried on puiblic transit (RPUT) in 1960 and 1970, and then using this relationship to derive a time series for MTHMAPT from RPUT. MTWNAPT and RPUR are dissimilar units since the first involves some fractions of workers at the time of the census, while the second measures the number of passengers in a year. To put RPUT on a comparable basis with MTH:IAPT, RPUT was divided by the number
of trips made in a year by a worker who uses public transportation to and from work. Assuming two trips per working day, and a two week vacation, this number is 500 trips. The resulting series was compared to the census data for MTWiA in 1960 and 1970.1/

RPUT/MTWWAPT $_{1960}=\frac{\frac{\left(\text { RPUT }_{1960}\right)}{500}}{\text { MTWNA }_{1960}}=1.9267$
RPUT/MTWNAPT $_{1970}=\frac{\frac{\left(\text { RPUT }_{1970}\right)}{500}}{\text { MTWINA }_{1970}}=1.8212$
The deciine in this ratio is indicative of the long run decline in the use of putlic transportation for purposes other than travel to work. Given the post-war migration away from the central cities where most public transportation is located, this is a plausible result.

This ratio was then linearly interpolated between 1960 and 1970.
$\underline{(\text { RPUT/MTHNLAPT } 1970-\text { RPUT/MTKMAPT } 1960 \text {) }}=-.01055$
10
Thus the interpolated ratio declined by .01055 per year, which implies an increasing rate of decline. This process was extrapolated backwards in time to 1947 using the same constant difference. The results are seen in

I/ Unfortunately the question on travel to work was not asked in the 1950 census, so that only two points of comparison exist.

Table Al-46, page Al-137.
The logical limit in the fall of this ratio must be substantially above unity, since a value of unity would im.rly that public transit was used only for travel to work. It a!so seems likely that the process which has heretofore led $t=$ an increasing rate of decline in this ratio, may now have leve?ied off as it begins to approach the effective limit of its decline. Therefore a constant rate of decrease equal to the car. pound rate between 1960 and 1970 was assumed for the period 1971 to 1975. This rate was -0.56%. The resulting series of ratios (RPUT/MTWiNAPT) were used to interpolate MTWNAPT by the following formula:

$$
\text { MTHWAPT }=\left(\frac{\text { RPUT }}{500}\right)\left(\frac{1}{\text { RPUT/MTWNAPT }}\right)
$$

The interpolated series is again shown in Table Al-46. This series declines steadily over most of the period as it should given the behavior of RPUT. This decline is less tnan proportionate to the deciine in RPUT since the reciprocal of RPUT/MThiNAPT is rising due to the decline in ridership for reasons other than travel to work. MTWNAPT does, however, begin to rise in 1974 and ' 75 due to the rise in RPUT caused by the addition of new rapid transit systems in Washington, D.C. and San Francisco. This seems a reasonable result.

The other component of MTMNA, MTHNAOTH, was derived by interpolating and extrapolating its relationship to total employment (NEHT) in
the two census years.

$$
\begin{aligned}
& \text { MTWNAOTH/NEHT }_{1960}=\frac{\text { MTWNAOTH }_{1960}}{\text { WEHT }_{19} 1960}=.23535 \\
& \text { MTWNAOTH/NEHT }_{1970}=\frac{\text { MTWNAOTH }_{1970}}{\text { NEHT }_{1970}}=.13124
\end{aligned}
$$

The interpretation of these ratios is more direct than in the case of RPUT/MTWNAPT. Here we may say that in $1969,23.5$ percent of workers travelled to work by means other than autos or public transportation, whereas only 13.1 percent did the same in 1970. This declire of 10.4 percentage point is due mostly to the de:line in persons who worked at home, which fell by 42.4 percent, and those who walked only, which fell by 11.3 percent. This decline is indicative of the same trends as in the case of RPUT/MTHNAPT, namely migration to surburban areas.

Using the same method of linear interpolation for the years prior to 1970 as we did in the previous case, we obtained a constant decline in the ratio of .01042 .

Though this difference is smidler than in the case of RPUT/NTWNAPT, it represents a higher rate of decline with a faster acceleration. This more
rapid rate is easy to justity when one thiniks of the rapid disappearance of "mom and pop" stores where mom ar.d pop lived upstairs, and the er:d of factory neighborhoods where the employees lived within waiking distance to work.

A constant rate of decline in this ratio of -5.7\% was used for the years 1971 to 1976. In this case the stabilization of the decline seems even more appropriate than in the last, since the changes which led to the decline of this ratio have probably had their largest impact already, and the ratio has become rather small (see Table Al-47, page Al-138).

The interpolation of MTWNAOTH is then the result of the following formula:

$$
\text { MTWNAOTH }=\text { (MTKNNOTH/NEHT) (NEHT) }
$$

The results are presented in Table Al-47. This sertes shows a large and rapid decline cuer the period, which is the required result. Some minor variations around this declining trend are caused by the cyclical Inovements of total employment. This result is also desired.

A.1.4.14 METROPOLITAN POPULATION

The percent of the population in metropolitan areas was found to have a significant impact on desired stock. For the cross-sectional data this index could be constructed fairly straightforwardly by collecting ropulation for each SMSA and all fractions of SMSA's (where SMSA's cross
state lines) within each state from Current Population Reports estimates of the population of SMSA's and counties by state. I/ These SMSA populations were then summed to get total population in SMSA's by state. The index of metropolitanization was computed by salculating the percentage of each state's total resident population that resides in SMSA's.

The metropolitan index time series was available in satisfactory form: from 1970 onwards. The intercensal estimates of NPMET prior to 1970 were interpolated by assuming a constant compound growth rate between each census year. This interpolation was done because Census Bur reau estimates do not Exist for all years, and because those that do e:ist were not revised to reflect decennial census results.

The first step in the interpolation procedures was to compute. the compound growth rates for the SMSA population:

$$
\begin{aligned}
& \text { NPIETAM }_{1960}=\text { NPMETNUM }_{1950}\left(1+r_{1}\right)^{10} \\
& \text { NPMETNUM }_{1970}=\text { NPPNETNUP }_{1960}\left(1+r_{2}\right)^{10} \\
& \text { NPMETNUM }=\text { L.S. population in SMSA's } \\
& r_{1}=\text { constant compound growth rate } 195-1960 \\
& r_{2}=\text { constant compound growth rate } 1950-1570
\end{aligned}
$$

The above equations were solved for the growth rate r_{1} and r_{2}, and these

I/U.S.Bureau of the Census, Current Population Reports, Series P-26, Nos. 52, $55,56,57,53,60,61,67-72,74-78,80-93$, and series $P-25$, nos. 527, 530$532,525$.
rates were applied to NPMETNUM 1950 and NPMETNUM 1960 to obtain the intercensal estimates of NPMETNUM, 1950 to 1970. The solutions were:
$r_{1}=.029$, or 2.9% compound growth rate
$r_{2}=.0213$, or 2.13% compound growth rate
Values for NPMETNUM since 1970 were obtained from various current pcpulation reports estimates. I/ The complete series is shown in Table Al-48, page Al-139.

The index of metropolitanization then becomes:
NPMET $=\left(\frac{\text { NPMETNUM }}{\text { NPR }}\right) 100$.

NPR $=$ U.S. resident population
The index of metropelitanization (NPMET) is also listed in TaDle Al-48.

I/ U.S. Bureau of the Census, Current Population Reports, Series P-25,
Mos. $618,536,505$.

TABLE A 1-1
FORMAT FOR DOMESTIC CAR IMAGE FILE
4 Cards Per Logical Record

Columns	Symbol	Description
1-2	YEAR	2 digit year code (1974 = 74)
3-6	MMMB	6 digit manufacturer, make, nodel, and boay siyle code
9	CRDAUM	Card Number $=1$
10	CLS9	1 digit, 9 category classification code
1i-i2	CLST	2 digit trarsportation class code
13-14	CLSPRM	2 digit primery classification rode
15-16	CLSSEC	2 digit secondary Elassification cude
17-24	IREG	Up to an 8 digit number giving number of registritions before Oklatioma correction
$20-32$:REGOK	up to an 8 digit number giving number of registrations after Oklangma correction
34-36	AUTO' ${ }^{\text {a }}$	Weight of optiona autoratic (x ¢...)
37-39	Al RW^{\prime}	Weight of optional air ($\mathrm{X} \times \mathrm{X}_{i}$)
41-72	NAME	32 character description of car (Alphanumeric)

TABLE \& 1-1 (Cont.)

Card 2

Colums	Symbol
1-2	YEAR
3-8	AMMB
9	CRDNUM
10-14	PBASE
15-19	POBT
20-24	$\mathrm{PB}+0$
25-29	PTRN
30-34	PTAX
35-39	PTOT
40-43	MPGCA
44-47	NPGHA
48-51	L'B
52-55	OPTVIGH
56-59	CUR3A
60-63	DISPA
64-67	FRICTA
68-71	FRACTS
72-75	fPacte

Descriotion
2 digit year code (1974 = 74)
6 digit manufacturer, make, model, and body style code

Card Number $=2$
Base price $\left(x \times x \times X_{1}\right)$
Installed options value ($x \times x \times x$,)
Price including installed options (xxxxxu.)

Transportation charges (x Y $\times \times \times X_{i}$)
State and local taxes ($x \times x \times x_{i}$)
Total delivered price (xxxxxn)
Average city MPG ($x X_{i}(x$,)
Average highway wis ($X X: X X)$
Wheeldase ($x \times x: X$)
Weight of all options (XXXXX.)
Average curb weight (xxxy.)
Average displacenent ($x \times x$ x:ix)
Fraction with 4 or less cvilinders ($X_{i}: X X X$)

Fraction with $5-7$ cylinders ($\left.X_{i}: X X X\right)$
Fraction with 8 or more cylinders ($x: x X X$)

Card 3

Columns	Symbol
1-2	YEAR
3-8	MMMB
9	CRDRIUM
10-13	AUtof
14-17	ORF
18-21	AIRF
22-25	PSTF
26-29	PBF
30-33	FMF
34-37	AMF
38-41	FSEF
42-45	Pre
46-49	PBDF
50-52	AUTOP
53-55	OPD
56-58	AIRP
59-61	PSTP
62-64	PBP
65-67.	FMP
60-70	AMP
71-73	PSEP
74-76	PWP

Description
2 digit year code $\quad(1974=76)$
6 digit manufacturer, make. model, and body style code

Card Number $=3$
Fraction with auto (XAXXX)
Fraction with overdrive ($X A X X X$)
Fraction with air ($X, X X X X)$
Fraction with power steering ($X A X X X$)
irartion with power brakes ($x_{1} X X X$)
Fraction with AM-FM radio ($X ; X X X$)
Fraction with Alf radio ($X: X X X X$)
Fraction with power seats ($X:(X X X)$
Fraction with power windows (M:MXX)
Fraction with optiunal power ($X: X X X X)$
disk brakes witn drum standard
Price of auto ($x \times \times A$)
Price of overdrive ($X X X X_{1}$)
Price of air ($X \times X A$)
Price of power steering ($x \times x_{11}$)
Price of power brakes ($X X X \%$)
Price of $A M-F M$ radic ($X X X X_{i}$)
Price of KMM radio ($X X X \%$.)
Price of power seats ($X X X, 1$)
Price of puter windows (XXY ${ }_{i}$)

Card 4

Colums	Symbol
1-2	YEAR
3-8	MMM
9	CRDNUM
10	NENG
11-14	EIF
15-16	CYLI
17-20	D1SP1
21-24	CURB1
25-28	MPGCI
29-32	MPGHI
33-3E	E2
37-38	C4L2
39-42	DISP2
43-46	CURB2
47-50	MPGC2
5i-54	HPGH2
55-58	ES
59-60	C4L3
61-64	D1SP3
65-68	CURB3
69-72	MPGC3
73-76	MPGH3

Description
2 digit year code (1974 = 74)
6 digit manufacturer, make, model, and body style code

Card Number $=4$
Number of engine options (1, 2, or 3)
Fraction with lst engine ($X \cap X X X$)
Cylinders for lst engine ($x x_{i}$)
Displacement for lst engine ($x \times x ; x$)
Curb weight (excluding options) ($x \times x x_{i}$) for lst engine

City MPG for lst engine ($X X A, X X$)
Highway MPG for lst engine ($X X: X X$)
Fraction with 2nd engine ($X \cap X X X$)
Cylinders for 2nd engine ($x x$:.)
Displacement for 2 nd engine ($X X X: X$)
Curb weight (excluding options) (xxxxi.) for 2 nd engine

City MPG for 2nd engine ($X X X_{i} X X_{1}$)
Highway MPG for 2nd engine ($X X_{i}: X X$)
Fraction with 3rd engine ($X: \times x \times$)
Cylinders for 3rd engine ($x x_{1}$)
Displarement for 3rd engine ($X X X, X$)
Curb weight (excluding options) (xגix.)
City MPG for 3rd engine ($X X A X X$)
Highwa; MPG for 3 rd engine ($X X: X X$)

TABLE A 1-2
FORMAT FOR FOPEIGH CAR IMAGE FILE
2 Cards Per Logical Record

Card 1

Colums	Symbol	Descriotion
1-2	YEAN	2 digit year code (1974 = 74)
3-8	M-YB	6 digit manufocturer, make, model, and body style code
9	CRDNUM	Card Number $=1$
10-11	CODE	2 digit classification code
12.	Chiry	1 digit country code
13-14	CLST	2 digit transportation class code
15-16	JRRP	2 digit final ciassification code
17-24	IREG	Up to 8 digit numbers giving number of new registrations before Oklahoma correction
25-32	IREGOK	Up to 8 digit numbers given number of new registrations after Oklanoma correction
34-36	GASC	Gasoline capacity (U.S. gallons) (XXR,Y)
37-39	WATC	Water capacity (U.S. quarts) ($X \times \wedge \cap$)
41-72	NAME	32 character description of car (Alphanumeric)

TABIE A 1-2 (Cont.)

Card 2

Columns	Symbol
1-2	YEAR
3-8	MPMB
9	CRDILAA
10-14	PBRSE
15-19	POBT
20-24	PB+0
25-29	PTEN
30-34	PTAX
35-39	PTOT
40-43	MPGCA
44-47	MPGHA
48-51	WB
52-55	OPTWGH
56-59	CURBA
60-63	DISPA
64-6j	CYL
66-69	AUTOF
70-73	ODF
74-77	SHIPA

Description
2 digit year code ($1974=74$)
6 digii manufacturing, make, model, and jody style code
'ard Number $=2$
Base price (XXYXXA)
Installed options value ($x \times x \times x$ f.)
Price including installed options ($X \times X \ddot{x} \times \mathrm{R}$)
Transportation charoes ($X X X X X P$)
State \& Local Taxes (XXXXY. $)$
Total delivered price ($x \times x \times x A$)
Average city MPG (XXAXX)
Average highway MPG ($X X \mathrm{HiKK}_{\mathrm{K}}$)
Whee inase ($X X X A X$)
Weight of installed options ($X X X X f$.)
Curb weight ($X X X X A$)
Displacement ($X Y X: X X$)
Number of cylinders (xyi)
Fraction with auto ($X: X X X$)
Fraction with overdrive ($X: X X X$)
Sripping weight ($x \times x \times x:$)
thate a $1-3$

CHEV NUVA
PITMOUIX VALIANT lord maverick
cudge das：
HONO MUSISNG
MERCUMY CUME：
Pridilac VENIUHa
mokhel mifory culisam

NITHIUIH BAYRACUDA

 BUICK CENIURY fRALARA
CHFV MUNII CARLO HINItAC LEMANS
DURE：CUMUNE CHARER

PCRD TOMINO
CMEY CMEVELE STCY WAGM
pught cemune siat fanc

：

100.00
100.00
100,00
응
응
ㅇ․ㅇ
－
O
－$=000-\infty-m$
5
은

101338
044980
112141
10150
$3=2051$
poncos
告
$1167 n 0$
0 orisn
bagss
路：
雨
期
器品

 5 $\$ 15410$
 E 1010
1910
1011
1010

ooceco
 suarimazel
 cturact cnaract
charact
COMPaC
（D）
（1）

UnPat
$n \rightarrow p a$
oupac

 －

A1－78

；ULL－31！f	10040	100724	3.05	100.00	LLDS OLLIA A
－Ul－silk	1407n	974．3	P．R1	110.00	vontiac caamd pkiz
1 UL－311	80040	aupas	2.62	170．00	mencuay marouls
1UL－31／2	$331: 0$	nirl？	2.42	100.00	unpre velara
sull－5111	11080	11018	子．2A	100.00	Chayalle nimperi
futl－312t	1span	Aseit	1．80	100．00	PUMIIAC CRAND Ville
1UL－31／l	$3>901$	Sutal	1.11	100.00	PLYMUUIN SIAT mate
（J！L－3121	150P1	9／0？ 0	1.28	100．0\％	Ponilat siat magan
1HL－5111	13070	aurns	1．？ 0	100，00	cher all ata
－UL－51／l	32080	以1M：	1．14，	100．69	PLYMUUTH C．HAN COUPE／SEDAN
गUL－31／1	2112n	14125	1．18	100，00	TOPD LTO RADUCHAM
rutl－31／1	31010	10084	1.12	190.00	Crikrglen kippunt custum
－ULL－S12	15040	3153s	1.10	100．00	romilac butincyille
いいし－31］を	10031	3imi．t	1.05	100．00	OLDS CUl：ASS 31at magn
1111－5121	3101？	31749	0.78	100．70	DHOCE SPCHISMAN Sili rgn
1HL－51\％	11098	31sal	0.71	100．00	
5月4L－SIzt	aloso	Sazal	0.99	100.00	AMCas3a008
futl－silt	20071	25ank	0.15	100，${ }^{100}$	maticuar staf mecon
－じし－31ヶ6	29000	2sess	0.15	100．00	mencury numifuty
futcalit	25040	197＊0	0.15	100．00	matagay munithty cusium
suth－sily	17050	232ヘ9	0.68	100．00	PLrmouth lukr 1
－Ul－3！	210 co	zeans	O．An	100，00	FCRD CUSTUA 500
－UL－S11］	21100	21245	0.05	100．00	IUMO CuEION
－Ul－31／E	31070	2111	0.01	100，00	乡uoge mijacu
1ULI．－51／t	2109%	212\％	0.46	100.10	Cono club macen
リUL－5ilt	15100	$201: 0$	0.59	100．00	FONTIAC CATALIEA GROUCMAN
－14－512F	32130	juAns	0.58	100.00	Plymouin ruhy is
1ULL－51价	33141	17as	0.51	10n．so	DODCE STA mign
－6LC－912	13002	1 1017	0.5 ：	100，00	cher nova sportvan
かい－sidt	15100	1317n	0.46	100．00	CHEV EISCATNZ
Mot－silt	910\％1	Gumb	0.24	100.00	ambasianor sia matm
由lt－sit	1110,0	क1＂	3.15	100．00	checata
LIP1R	$170>0$	124105	19.98	100.00	CAOILLAC OE Vitle
LITHRY	11040	107097	17.90	100.00	butca llictar 225
turimy	10060	12cala	18.12	100．00	Clos 9a
LITHEY	31150	Stin：？	3.98	100.70	10 O
tustur	27020	50119	5.10	100．10	INSEML CyMt makk
LICtiny	10040	－100？	4．9\％	100.00	Cles turonado
brimy	22010	4690	9.10	100.09	Gincoln cunl
11 sosy	12050	c0s11	－． 20	100．00	CAMILAECLDDAEDO
lughey	11060	10915n	3．al	100，00	sulca riviena
turnay	31050	enany	1.13	109．03	Chhtsleh ntF ruakta exouthan
Lurlioy	11071	2910	3.11	100.00	RUIC＂STATION WACN
110 \％｜	11120	81.080	$2 \cdot \mathrm{No}$	100，00	CHIV COKVItt
LICH\％	140：1	2015	2.14	100．00	ULDS slat magh
ctrent	13010	－010］	2.12	100．20	caillie rielimuce oo
LItHRy	\＄1041	1009？	1.91	100．00	Chirsetm 9latioy mag
い1010y	31000	11380	1．82	100，00	ChHysta ken pohaty
tuxiay	51010	lunk	1.53	103，00	CHAYSLEL IMFIRIAL
$1118: 4$ \％	120：0	60.3	c．id	100.00	CIOItLAC CALAIS
しひなぐy	İतun	0 col	0.82	108.00	canillac thermssts
tusury	stono	64	A．A4	100.00	CHNTSLIR 300 （17 MOOLS

TAULE A 1-4

A1-80

$$
\begin{aligned}
& \text { Luxury } \\
& \text { nevere }
\end{aligned}
$$

A1- 12

AJ. -83

迬
む
コِ

TABLE A 1-9
CITY AND HIGHWAY DRIVING MPG EQUATIONS

1. CITY DRIVING MPG

```
                (34.73) (14.91) (9.79)
```

 - 0.031764 DiNATR +0.110129 DUMACYL +0.057934 DUM6CYL
 (2.97) (5.09) (5.31)

+0.035437 DUR167-70 +0.025392 DUM71 -0. CO2585 DUA773
(1.83) (1.08) (0.19)
$-\underset{(0.04)}{0.000884}$ DUMM74 $+\underset{(1.09)}{0.025943 \text { OUM75 }+\underset{(8.99)}{0.218262} \text { DUM66 }}$
(0.04) (1.09) (8.99)
$R^{2}=0.917 \quad$ SEE $=0.09147$ SIMPLE SIZE: 723
II. HIGHNAY DRIVIMG MPG


```
+ = 0.035350 DUM6CYL - 0.030421 OUM50-57 + (2.28) 0.025458 OUNS5.59
```


$\bar{R}^{2}=0.875 \quad$ SEE $=0.09162$ SAMPLE SIZE: 723
III. DEFINITION OF VARJAELES USED IN EQUATI3HIS

MPGC weity driving MPG
MPGH = Highway driving MPG
IW \quad Inertial weight (Curb weight +300)

TABLE A 1-9 (Cont.)

```
OISP E Engine displacement
DUMATR = 1 if eutonatic transmission, 0 otherwise
DUYODR = l if overdrive, O otherwise
DUM4CYL = 1 if 4 or less cylinders, O otherwise
DUM6CYL = 1 if 5, 6, or 7 cylingers, 0 otherwise (only 6 cylinder
        engtnes are in sample)
DUM50-54 = 1 in 1950 to 1954, O elsewhere
DUM55-59 = 1 in 1955 to 1959,O elsewhere
DUM60-65 = I in 1960 to 1965, O elsewhere
DUM66 - I in 1965, 0 elsewhere
OLM67-70 = 1 in 190.? to 1970, O elsewhere
DUM71 = 1 in 1971,0 elsewhere
DUM73 - l in i973, 0 elsewhere
DUM74 = 1 in 1974, O elsewhere
DUM75 - }1\mathrm{ in 1975, O eisewhere
DUM50-57 = 1 in 1950 to 1957, O aisewhere
DUM58-59 =1 in 1958 to 1559, O elsewhere
DLM50-66 = 1 in 1960 to 1966,0 elsewhere
DUM67-70 = 1 in 1967 to 1970, O elsewhere
```

1IImainiviof

THB'EE \& I-IC

Deseryoiicr of Car

Ciserngivay.
Subecrexi:s

Toyota Corolia	16	32	21	33
Pinto	13	2:	18	20
Greml in	13	24	19	24
Astre	16	29	21	29
V'ri Ratbit	19	32	29	38
Wic Pecer	12	22	18	24
Honda Civic Crec	21	33	27	j\%
Toyota Corona Wagon	15	30	19	28
Vi'i Casher liagon	18	30	23	35
Datsun 710 Wiaçon	16	28	22	33
Ford Pinto lizson	13	21	15	2?

Corpacis

Auct 100.S	17	27	18	28
Peuseot 50́n	15	25	20	27
Volvo 2i゙j	12	29	: 6	20
Sad 98.E	16	28	21	27
planoutn valiant	10	21	18	23
Cherey Hova	12	19	16	21
Hersury fionareh	10	16	15	20
Ford Maverick	9	16	16	18

Mid-Stze

Buich Certury
10
Chevelle
10

Plymoi:n Fury
10

20	16	26
19	16	21
15	15	21
21	16	22

Full-Size

Pontiz: Ca:alir.a
$8 \quad 17$
$12 \quad 17$
Cherroie: Bel hir

9	17	12	18
9	18	12	17
9	16	11	15

rymouth Gran Fury
1115

II Taken fram iarious 10,5 issues of Consuner feperss nizazare.

$\begin{aligned} & \text { 帯 } \\ & \stackrel{y y}{4} \\ & \hline \end{aligned}$	 		
		：	
$\begin{aligned} & \text { 呂 } \\ & \text { 害 } \end{aligned}$	 	产	

$\begin{array}{ll}5 \\ 3 & \therefore\end{array}$

TACLE A 1－12

 じッ．octun

 ustoolsp
 Engine Displacerent（Cubic Inches） uscuelsp uscrolsh iserosish 271，远 Curb lisight（rounds）
EY SILE CLASS（EJitestil m．o ruREIGir） －Curb lieight（founds）

```
*)
```

331.

SALES WEIGHTED AVERAGE FRACTION OF AUTOMATIC TRANSMISSIONS
AND OVERDRIVE UNITS INSTALLE (1958-1974) BY SIZE CLASS (DOMESTIC AND FOREIGH)

$$
\text { TABLE A } 1-13
$$

 TALLE A $1-14$
SALES NEIGHTED AVERAGE FFACTiON OF FOUR CYLINDER AND SIX CYLIHDER
EHANINES INSTALLED (1958-1974) BY SIZE CLASS IDOMESTIC AND FOREIGN)
Fraction With 4 or Less Cylinders

uscoracy	usersuert	usmoracris	UsFDFacre	ustoracri
0,0	0.7705	0,0	0,0	0.0
0,0	0,9409	0,0	0.0	0,0
0.0	1.0000	0.0099	0,0	0.0
0,0026	1,0000	0.0531	0,0	0.0
0.0170	1,0000	0.0001	0.0	0.0
0.10030	1,0000	0,0341	0,0	0.0
0.0095	1,0000	0,0	0.0	0.0
0.0	1,00c0	0.0	0,0	0.0
0,0	1,0000	0.0	0.0	0.0
0,0005	1,0020	0,0	0,0	0.0
0.0009	1,0800	0.0	0.0	0.0
0.0035	1.0000	0.0	0,0	0.0
0.0	1,0000	c, 0	0.0	0.0
0.0	0.4724	0,0	0,0	0,0
0.0	0,9095	3.0	0,0	0.0
0.0	1.0000	0,0	0.0	0.0
0.0	1.0020	0.0	0.0	0.0

ustorbert

NOTE: USJCFACYL

 E.
0
0
0
0
0
0

TABLE Al-15

PARAMETERS FOR COST PER MILE

Average Price Relatives, Car Aged i to New PR ${ }_{i}$

$i=0$	1.0	.75
1	.77345	.75
2	.65625	.70
3	.52549	.65
4	.42183	.60
5	.33748	.50
6	.26640	.40
7	.21133	.35
8	.17580	.30
9	.15000	.25

TABLE A1-16

ESTIMATION OF CONSUMER INSTALLMENT RATE, NEW RUTOS

```
FRMCICR = 5.92465 + 0.662764 FRMCS
    (21.4814) (20.5486)
    \mp@subsup{R}{}{2}=0.963 SEE = .11029 DW = 1.625
    Quarterl; Cata, 1972.1 to 1976.1
```

Definitir
FRMCICF Consumer Installment Rate, New Autos.
FRMCS: Moody's Tota? Corporate Bond Rate.

ANNUAL ESTIMATES OF FPMCICR

1950	7.82	1971	11.19	
1954	8.02	1972	10.98	(10.98)
1953	8.68	1973	$11.09(17.15)$	
1962	8.98	1974	$11.87(11.80)$	
1966	9.47	1975	$12.20(12.24)$	
1970	11.56	1976 $(3$ Months)	$12.05(12.16)$	

Values in parentheses are data for 1972-76.

TABLE Al-17

OPERATING COST COMPONENTS BY SILE CLASS AND YEAR OF OPERATION

I. Rurair Costs

Year	Subcompact	Compact	Mid-Size	Full-Size	Luxury
1	\$76.15	\$79.41	\$ 30.63	\$81.84	\$90.92
2	114.59	107.14	111.26	115.37	126.91
3	153.55	170.61	206.63	242.65	266.92
4	197.01	218.90	257.50	296.09	325.70
5	216.24	240.27	257.91	275.54	303.09
6	241.93	258.81	280.68	292.54	321.79
7	370.84	412.04	404.80	397.56	437.32
8	159.59	177.27	174.55	171.82	189.05
9	71.06	78.95	161.64	244.33	258.76
10	27.99	31.10	30.14	29.17	32.09

II.Parking, Tolls, and Other Miscellaneous

Year	Subcompact	Compact	Mid-Size	Full-Size	Luxury
1	\$208.36	\$208. 36	\$208. 36	\$208.35	\$208.36
2	199.22	199.22	199.22	199.22	199.22
3	190.08	190.08	190.08	190.08	190.08
4	180.94	180.94	180.94	180.94	180.94
5	180.33	180.33	180.33	180.33	180.33
6	180.33	180.33	180.33	180.33	180.33
7	177.89	177.89	177.89	177.89	177.89
8	171.80	171.80	i71.80	171.80	171.80
9	165.71	165.71	165.71	165.71	165.71
10	154.7\%	154.74	154.74	154.74	154.74

TABLE A1-17 (Cont.)
III. Insurance Costs

Year	Subcompact	Compact	Mid-Size	Full-Size	Luxury
1	\$145.00	\$15..20	\$159.50	\$164.00	\$173.00
2	140.00	147.00	151.5	156.00	165.00
3	140.05	147.00	151.5	156.00	165.00
4	133.00	140.00	143.5	147.00	156.00
5	133.00	140.00	143.5	147.00	156.00
6	108.10	114.00	115.0	116.00	126.00
7	108.00	114.00	115.0	?16.00	126.00
8	108.00	114.00	115.0	116.00	126.00
9	108.00	114.00	115.0	116.00	126.00
10	108.00	114.00	115.0	:16.00	126.00

IV. Tiras Including Taxes

Year	Subcompact	Compact	Mid-Size	Full-Size	Luxury
1	\$14.96	\$16.47	\$17.38	\$18.28	\$18.28
2	13.37	14.76	16.02	17.29	17.29
3	11.82	13.05	19.30	25.54	25.54
4	33.41	36.88	42.35	47.82	47.82
5	33.08	36.52	41.93	47.34	47.34
6	37.48	41.38	45.16	48.94	48.94
7	35.96	39.70	47.14	54.59	54.59
8	60.07	¢6. 32	66.98	67.63	67.63
9	53.39	53.94	57.90	56.87	56.87
10	40.24	44.4?	44.88	45.35	45.35

```
TAELE Al-17 (Cont.)
```

v. Motor Oil Including Taxes

Year	Scibcompact	Compact	Mid-Size	Full-Size	Luxury
1	\$10.71	\$10.71	\$11.09	\$11.47	\$11.47
2	9.94	10.71	11.09	11.47	11.47
3	10.67	11.47	11.86	12.24	12.24
4	10.67	11.47	11.86	12.24	12.24
5	12.24	13.01	13.01	13.01	13.01
6	12.24	13.01	13.39	13.77	13.77
7	12.24	13.01	13.39	13.77	13.77
8	12.24	13.01	13.39	13.77	13.77
9	11.47	12.24	12.24	12.24	12.24
10	6.50	6.88	6.88	6.89	6.89

[^9]TABLE $21-16$
COSTS PER MILE ACROSS SIARES IT 197？

CP：372SDCN

CPMT2SFEAP
CPM72STCAP
こPMT2 SCLAP
CPM72CFCNA
CPMFここTCAP

CC	0.11005	0.11715
ME	0,10582	0.10256
N／M	0.10032	0,10002
$v i$	0,10450	0.10004
NA	0,11030	0.11305
R！	0.11337	0.11583
C 7	0.11453	0.11700
NY	0.11202	0.11807
NJ	0.11691	0.11782
pa	0.10860	0.11112
OH	0.10974	9.11380
IV	0.10350	0.111117
16	0.11131	0.1154 ？
4	0,10748	0.11222
$\cdots 1$	0,10870	0.11001
WN	0.10903	0.11251
：${ }^{6}$	0.10700	0.1102 m
0	0.10790	0.11188
NO	0.10230	0.10 e30
So	0.10189	0.10805
NE	0.10075	0,11087
K 5	0,10440	0.10779
OE	0.11024	0,11200
Mo	0.11001	0.11318
VA	0.10010	0,11002
wV	0.10551	0.10900
NS	0.10592	0.10980
SC	0.10554	0.10050
64	0.10725	0.11137
if	0.10040	0.11290
KY	0.10057	0.111058
in	0.10721	0.11111
46	0.10002	0.11021
MS	0,10433	0.10700
48	0.10356	0.10049
14	0,10842	0.10052
18	0.10763	0.10000
17	0.10320	0.10750
10	0.10403	0,10842
－\quad Y	0.10349	0.10779
60	0.10632	0.11252
M	0.10530	0.10051
42	0.10847	0.11174
UT	0．10725－	0.11130
nv	0.11177	0.11501
102	0.10097	0.11000
07	c．ioss	0.10900
Cd	0.11207	0.11333
OK	0.10707	0.11020
ak	0.11030	0.11230
m！	0.103 ¢ 0	0.10800
US	0.10800	0.11228

0.13920	0.13×51	0.10501
0.12024	0.13367	0.12 ± 23
0.12501	0.13798	0.12 15n
0.12192	0.13310	0.12304
0.13158	0.10357	0.13330
0.13565	$\bigcirc 0,10817$	0.13713
0.13095	0.14832	0.13850
$0 .: 3630$	0.14940	9．13548
0.13755	0.13072	0.13879
0.12881	0.14531	0.12033
0.13005	0.14603	0.13038
0，129！7	2，14i6？	$\therefore 12030$
$0.13 \geq 56$	$0,14.15$	P．15311
0.12752	3．105：0	0.12774
C．125：3	$0 .: 3155$	2,12006
c．．25．81	6．：3： \％$^{\text {a }}$	0.12030
C，1csol	C．16072	－1202：
C．1274．1	0.1032 l	0.12752
C．11955	0.13784	0.11041
0.11017	0.13025	0.11978
0.12581	0.10750	0.12733
0.12330	0.13890	0.12308
0.15100	0.10417	C．13145
$0.13: 14$	0.10500	0.13190
0.12528	0.10005	0.12798
0.12308	0.13005	0.12391
0.12013	0.14155	0.12 .588
0.12518	0.10237	0.12507
0.12798	$0.146: 7$	0.12847
C．：3133	0.10702	0.13180
0.12580	0.14232	0.12 100
0.12728	$0.1+307$	0.12770
0.12303	0.10352	0.12722
0.12357	0.16009	0.12336
0.12238	0.13880	0.12250
0.12500	9．1445？	0.12710
0.12867	0.10350	0,12023
0.12130	0.13700	0,12213
0.12321	c，14107	2，1209．1
0.12229	0.13030	0.12327
0.12943	0,10490	0.13153
0.12502	0.14100	0.12037
0.12002	0.14035	0.13043
0.12790	0.14200	0,12877
0.13542	0.1500 ？	0.13044
0.13174	0.14098	0.13358
0.12531	0.10007	0.12795
0.13040	0.10030	2.13505
0.12761	0.14138	2，1251：
0.13150	C．：4531	$0.1333-$
0.13981	0，：3025	0.13123
0．120：\％	0，：0683	0,13053

TABIE AI－？8（Cont．）

CPMTE～SERP	EPRT2FこA\％	SPMI2－CEAP	CPM72LFニ～～	CFM72：TEAP	ごッ72TTLAP
0.15878	0,17718	0.2 .53	0.22000	0.22018	9，5890
0.14307	0.159 .32	0,19730	0.20554	0.10003	3．15990
0.10403	0,10031	0,19992	0.20019	c．10953	$\therefore 130$ こ
0.10075	0.15591	0.19371	0.19010	0.19424	$0.1352 n$
0.15217	0.10925	0.20500	0，21017	c． 20920	0.14800
	$0.17{ }^{0.180}$	0.21918	0.22368	$0.2: 973$	\therefore ，isis：
0.15 ac	$0.17 n ? 8$	0.21850	0.21702	0.2585	○．：¢2ミ：
$0.154 \square^{\circ}$	0.17250	$0.2103:$	0.22220	0.21006	0．15580
0,15008	0，17721	0.22093	0，？2704	0,22143	c，15922
0,10250	0.10527	0.20014	0.21985	0.20727	C．14771
0.15055	0.86672	0,20452	0,22213	0.20531	0.15100
0.14520	0.10180	0.19030	0.21089	0,10743	0.14773
0．：5238	3.10 ± 50	0,20310	0.22959	0.29990	6，15107
j，1003	0,10311	0,20130	0.22291	0.20181	？，15078
0,14390	5.16039	0.10498	0.20757	0.10552	0.12760
0.14952	0.100 co	0.20182	0,22005	0,20291	－．15090
$0.164{ }^{\text {a }}$	c．10132	0.19037	0，21577	0，107：c	¢14才こと
$0,1=12$	0.1032 l	0.19044	0.21574	c．223c＾	1，1：01＝
0．1うこのM	$0.1527{ }^{\circ}$	0.18025	0.21283		人，1＋ė $=$
$0.13=02$	0．1523：	0.1812 l	$0, \dot{E}-80$	0．15：3	0．：心1：
0．11407	0.10140	0.19702	0，22103	2，19850	6，1－20：
2，10150	0,15728	0.10203	0,23556	c，103\％	－1ぐくこ7
0.15050	0.10777	0,20082	0，223：9	0,20797	C，1ヶ9e8
$0 .: 5050$	0，10784	0.20824	0.22010	0.20004	$? .14780$
$0,1+331$	0,10165	0.19887	0.21299	0.10092	¢，152\％ 1
0.10250	0,15872	0.19725	C，2：15］	0，198．1	9．1389\％
0.14463	0.10102	0.19624	0.21050	0,19730	2：10：05
0.10057	0,10070	0.10720	0,22103	0,19848	2．14409
0,12704	0,16432	0.20210	0.22502	0.20303	0.14701
0．15096	0.10801	0.21050	0,23521	c． 21200	c，15075
9，14523	0.10107	0.19502	0.21291	0.190 co	6.10536
0,14703	0．10381	0，20109	0，2：701	0,20250	$0.1:$ ET
0,118020	0,10283	0,19801	0,21827	$0.190: 5$	\therefore ：$: 175 \mathrm{~S}$
0.12203	0.15871	0.19337	0.2126°	C． 19508	$=.10590$
0.16059	0.15059	0.19173	0.21357	C．10240	6．16017
0.10063	0.10302	0,20085	0.21732	c．201t5	0，146c：
0.16749	0.10070	0.20251	$0.2: 820$	0.20354	C．15152
0.13957	0.15538	0.19120	0.20080	0.19297	Q．13575
－ 0.15200	0.15005	0，19770	0.20 Eu 7	0.19842	0.13064
0,13508	0,1559	0,19181	0.21315	0.19293	－14130
0.14837	0，1053：	0,20503	0.21280	0,20035	0.10332
0,10501	0,10097	0,19933	0.20409	0,10973	0.10120
0.14939	0.10073	0,20850	$0.22: 71$	6，20909	9，itnco
$0,107=3$	0.10007	0.20488	0，2：401	0.20584	0，：4353
0.15532	0．17202	$0.2: 972$	0.25720	0,22190	0.15607
0.15232	0.10915	$0,2 \cup 830$	0，2：748	0.20930	0.11301
0.12447	0.16040	0,22067	0，210：0	0.20177	0，137：0
0.15010	0.17201	0,21042	$0,2235:$	0,21752	c．1455s
$0.10 \text { e } 38$	c． 10290		$0.3: 535$	$0,20232$	0.10710
0.15203	C．10813	0.21235	$0,22732$	0．215お5	2．1c150
c．15139	0.10992	0.21720	$0,2: 103$	0.21025	$\bigcirc \cdot 12913$
0.18933	0，10023	0.20579	0．2：543	$0.200{ }^{\text {a }}$	$\because!4=22$

NADLE Al－22
Mximla options prices by class（usactorim）

ustarorim
123．16
1：3．15
1i3．4n
103．as
1111．9n
110% non
12n日．ア9
12tr． 10
1 112．78
－21n．n3
list．ay
1ハA．n1
1！n9．
1391.13
1113．9n
1315．78
$1: \cdot 1$

uscdropia

 CNRS or Stafe (1922)

 TABLE A1-23

TABLE Al-23 (Cont.)

```
KEY:
SUB-ALL = All subcompact cars.
COM-SDN = Compact sedans.
COM-HGN a Compact wagons.
MID-SDN = Midsize sedans.
MID-HGN = Midsize wagnns
LPF-SDN = Low priced full-size scdans (e.g.. Ford, Chevrolet, Plymouth,
    and Dodge).
LPF-WGN = Low priced full-size wagons (e.g., Ford, Chevrolet, Plymouth,
    and Dodge).
HPF.ALL = Expensive full-size cars; all full-size sedans and wagons not in
    low price group except Cadillac, Lincoln, Imperial and Thunaerbird.
LUX-ALL = A.ll luxury sedans.
VET-ALL = All corvettes.
AVR-RLL = fverage across all classes.
```

TABLE A1-24

STATE	AUTCRETATSY 2
DC	30.500
ME	69.000
RH	60.000
VT	60.000
ma	46.000
RI	46.000
Ct	34.000
NY	30.800
Ns	31.000
PA	32.700
OH	71.200
1 H	75.000
11	80.500
MI	79.000
W!	87.000
M	$100.5 C$
If	92.000
MO	89.400
HD	153.50
50	135.05
N8	117.00
ks	95.000
OE	32.000
MO	31.000
VA	66.000
W	72.500
N	69.500
5	70.000
GA	70.500
FL	98.900
KY	¢5.500
iN	56.000
$\stackrel{4}{45}$	58.500
Ms	46.000
AR	56.000
LA	31.000
Ix	38.100
M	:35.00
10	124.00
WY	147.00
CO	147.09
k	120.00
22	79.000
UT	94.500
NV	63.000
WA	124.60
02	103.50
ca	36.000
0 O	62.500
${ }^{2} \times$	35.000
H1	35.000 59.117

TABLE Al-26
NEW AlTO SALES TAXES BY STATE, 1972
(Percent)

	TXRSAUTUYT2 State	TXRLAUTOY72 Local	TXRAUTOY72 Total	TXRLATDAUTOY72 Weighted Locel	TXRWYDAUTOY72 Weigrted Total
DC	4.0	0.0	4.0	0.00	4.00
MNE	5.0	0.0	5.0	0.00	5.00
NH	0.0	1.7	1.7	1.70	1.70
VERM	4.0	0.0	4.0	0.00	4.00
MASS	3.0	0.0	3.0	0.00	3.10
RI	5.0	0.0	5.0	0.00	5.00
CONN	7.0	0.0	7.0	0.00	7.00
NY	A. 0	3.0	7.0	2.18	6.18
NJ	5.0	0.0	5.0	0.00	5.00
PENi ${ }^{\text {a }}$	5.0	0.0	6.0	0.00	6.00
OHIO	4.0	0.5	4.5	0.02	4.02
I.ND	2.0	0.0	2.0	0.00	2.00
ILL	4.0	1.0	5.0	0.99	4.99
MICH.	4.0	0.0	4.0	0.00	4.00
WISC	4.0	0.0	4.0	0.00	4.00
MINN	4.0	1.0	5.0	0.01	4.01
IOHA	3.0	0.0	3.0	0.00	3.00
MSSR	3.0	1.0	4.0	0.01	3.01
ND	4.0	0.0	4.0	0.00	4.00
SD	3.0	0.0	3.2	0.00	3.00
NEB	2.5	1.0	3.5	0.00	2.50
KAN	3.0	0.5	3.5	0.25	3.25
DELA	2.0	0.0	2.0	0.00	2.00
MYLD	4.0	0.0	4.0	0.00	4.00
VIRG	2.0	0.0	2.0	0.00	\%.00
WV	5.0	0.0	5.0	0.00	5.00
NC	2.0	0.0	2.0	0.00	2.00
SC	4.0	0.0	4.0	0.00	4.00
GEOR	3.0	0.0	3.0	0.00	3.00
FL	4.0	0.0	4.0	0.00	4.00
KENT	5.0	0.0	5.0	0.00	5.00
TENN	3.5	1.5	5.0	1.26	4.76
ALAB	1.5	2.C	3.5	1.60	3.10
HSSP	3.0	0.0	3.0	0.00	3.00
ARK	3.0	0.0	3.0	0.00	3.00
LOUS	3.0	3.0	6.0	3.22	6.22
TEXS	4.0	0.0	4.0	0.00	4.00
MONT	1.5	0.0	1.5	0.00	1.50
IDA	3.0	0.0	3.0	0.00	3.00
WYO	3.0	0.0	3.0	0.00	3.00

TABLE Al-?6 (Cont.)

	TXRSAUTOY72 State	TXRLAUTOY73 Local	TXRAUTOY72 Total	TKRLHTDAUTOY72 Heighted Local	TXRHTDAUYOY72 Heighted Total
COL	3.0	3.0	6.0	0.65	3.65
NM	2.0	0.5	2.5	0.05	2.05
ARI2	3.0	2.0	5.0	0.90	3.90
UTAH	4.5	0.0	4.5	0.00	4.50
NEV	7.6	0.5	7.5	0.06	7.06
HASH	4.5	0.5	5.5	0.26	4.76
OREG	0.0	0.0	0.0	0.00	0.00
CALI	5.0	0.5	5.5	0.50	5.50
OKLA	2.0	2.0	4.0	0.83	2.83
ALAS	0.0	3.0	3.0	4.31	4.31
HAW	4.0	0.0	4.0	0.00	4.00

TABLE Al-27
STATE AND LOCAL TAX RATES ON NEW AUTOS.-U.S.
(Percent)

	TXRSAUTO State	TXRLAUTO LOCAI	TXRAUTO Total	TXRLWTDAUTO Weighted Local	TVRWTDAUTO Weighted Total
1946	1.17	0.31	1.48	0.25	1.42
1947	1.24	0.31	1.55	0.25	1.49
1948	1.24	0.31	1.55	0.25	1.49
1949	1.24	0.32	1.57	0.25	1.50
1950	1.24	0.32	1.57	0.25	1.50
1951	1.41	0.41	i. 82	0.32	1.73
1952	1.47	0.41	1.85	0.32	1.76
1953	1.44	0.41	1.85	0.32	1.76
1954	1.51	0.41	1.92	0.32	1.83
1955	1.56	0.43	1.99	0.34	1.90
1956	1.70	0.43	2.13	0.34	2.04
1957	1.69	0.43	2.12	0.34	2.03
1958	1.71	0.43	2.14	0.34	2.05
1959	1.71	0.43	2.15	0.34	2.05
1960	1.81	0.44	2.25	0.35	2.16
1961	1.91	0.44	2.35	0.35	2.16
1962	2.07	0.44	2.51	0.35	2.42
1963	2.11	0.44	2.56	0.35	2.46
1964	2.19	0.45	2.64	0.36	2.55
1965	2.23	0.46	2.70	0.37	2.60
1966	2.79	0.48	3.27	0.39	3.17
1967	3.07	0.47	3.54	C. 38	3.45
1968	3.47	0.40	3.87	0.29	3.75
1969	3.50	0.39	3.89	0.27	3.77
1970	3.60	0.59	4.19	0.28	2.89
1971	3.81	0.78	4.59	0.41	4.23
1972	3.85	0.63	4.48	0.43	4.28
1973	3.92	0.63	4.55	0.43	4.35
1974	3.99	0.73	4.72	0.48	4.47
1975	4.05	0.74	4.80	0.49	4.55

INTERPOLATION OF END OF YEAR CARS IN OPERATION (OPMVUAYEND) (Million Vehicles)

1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1957
1968
1969
1970
1971
1972

OPMYUAYEND
28.744
31.349
34.326
37.219
39.143
40.986
43.294
45.882
48.591
50.618
51.962
53.789
56.095
57.978
59.857
02.176
64.772
67.495
70.102
72.116
74.163
76.926
79.471
81.792
84.788
$88.1 \div 2$

DMPVUAY	CINUANR
27.521	3.1672
29.968	3.4910
32.731	4.8390
35.922	6.3264
38.516	5.0609
39.770	4.1584
42.202	5.7390
44.387	5.5355
47.378	7.1699
49.804	5.9552
51.432	5.9823
52.492	4.6510
55.087	6.0413
57.103	6.5756
58.854	5.8547
60.860	6.9389
63.453	7.5567
66.051	$8.065 i$
68.940	9.3139
71.264	9.0085
72.963	8.3574
75.358	9.4639
78.495	9.5273
80.448	8.4505
83.137	9.9636
85.439	10.608

TABLE AI-29
FS:IVATIO: OF ENO OF YEAR C:PS ! ! OAERMTION BY STATE (Mill. Venisles)

	CPMufurerivy	ompvuayzz	Qurunitry 72
DC	. 37195	. 37005	. $03: 797$
ME	.6125:	. 40627	. 036678
NH	. 33250	. 32145	. 049190
$V^{1 T}$.1295?	. 1845	. 025633
M	2.2757	2.2257	. 25045
R1	. 428 E 3	. 40353	. $0 \div 4328$
CT	1.4225	$1.4 i 26$. 14970
NY	6.3739	6.2246	.81909
NJ	3.2313	3.2605	. 41423
Ph	6.7758	4.6905	. 56239
OH	4.5816	4.8350	. 60141
I'	2.1558	2.100	. 28159
H	4.7834.	4.6313	. 69187
M1	4.1865	$4.032 i$. 64615
W1	1.8676	1.8632	. 20626
Ms	1.7650	1.7567	. 16325
3 A	1.3180	1.3094	. 12644
H0	1.9253	1.90:8	. 24416
N0	. 26857	. 26.580	. 026050
50	. 28231	. 28111	.0:5363
is	.696\%4	. 69329	. 069566
ks	1.0761	1.0520	. 11295
05	. 27371	. 26223	. 033352
0	1.5628	1.4881	. 33350
Vf	1.8530	1.8046	. 24765
W	.67839	. 66578	. 030855
HE	2.1220	2.0568	. $260 \div 8$
SC	1.1730	$1.15 \leqslant 5$. 12532
G4	2.0) 5	2.0217	. 25690
FL	3.6523	3.5290	. 44269
KY	1.3700	1.3617	. 13162
Til	1.5898	1.5502	. 20573
${ }^{\text {AL }}$	1.6032	1.5523	. 36693
HS	.86113	. 82939	. 093826
AR	. 71075	. 69617	. 037430
LA	1.3562	1.2235	.17592
Tx	4.7316	4.6175	. 61436
M	. 22293	.28:50	.025200
10	. 32902	. 30817	. 225275
H\%	. 14067	. 13522	. 016528
CO	1.1655	?. 0912	. 12159
NM	.CCES	.4305	. 050222
R	. 65200	. 64229	. 08335
UT	. 46300	. 45650	. $0: 5122$
NV	. 2 ¢ ²	. 25.295	. 032 ¢ ${ }^{\text {e }}$
HA	1.5175	1.5155	.1395?
02	. 97625	. 96394	. 10116
CA	9.4520	9.3058	-09582
O\%	1.1722 .033582	1.1504 $.08 i 753$.12045 $.010 \leq 95$
${ }_{\text {Hi }}$. $33711{ }^{\text {a }}$. 332.24	.037is\%
US	88.122	86.439	10.603

TABLE Al-3C
ESTIMATED SURVIVA: PROBABILITIES FOR CARS BY VINTAGE YEARS

	P_{i}	q_{i}	PSE $_{i}$	$P D E_{i}$	PDEC_{i}
0	. 99800	. 00200	. 9980000	. 0020030	. 0020000
1	. 99379	. 00621	. 9918024	. 0061975	. 0081976
2	. 98859	. 01141	. 9804859	. 0113164	. 0195141
3	. 98212	. 01788	. 9629548	. 0175310	. 0370452
4	. 97268	. 02732	. 9366468	. 0263079	. 0633532
5	. 95990	. 04010	. 2990872	. 0375595	. 1009128
6 -	. 94010	. 05990	. 8452318	. 0538553	. 1547682
7	. 90706	. 09294	. 7666759	. 0785558	. 2333241
8	. 88297	. 11703	. 6769518	. 0897240	. 3230482
9	. 82805	. 17195	. 5605499	. 1164018	. 4394501
10	. 75339	. 24661	. 4223 !26	. 1382372	. 5776874
11	. 71481	. 28519	. 30187.32	. 1204393	. 6981268
12	. 70000	. 30000	. 2113112	. 0905619	. 7886888
13	. 70000	. 30000	. 1479178	. Úへ33930	. 8520822
14	. 70000	. 30'600	. 1035424	. 0443753	-. 8964576
15	. 70000	. 30000	. 0724796	. 0310627	. 9275204
16	. 70000	. 30000	. 0507357	. 0217438	. 9492643
17	. 70000	. 30000	. 0355149	. 0152207	. 9644851
18	. 70000	. 30000	. 0248604	. 0106544	. 9751396
19	. $7000 ?$. 30000	. 0174022	. 0079581	. 9825978
20	. 70000	. 3000 5	. 0121815	. 0052206	. 9878185

KEY:

$P_{i} \quad=$ Probability of a car surviving the $i t h$ year of its life given it survived until the end of year $i-1$ (beginning of year i); $i=0, \ldots, 20$.
q_{i}
ع Probability of a car not surviving the i th year of its life given it survived unti! the end of year $i-1$ (beginning of year i); $i=0, \ldots, 20$.

PSE
$=\prod_{i=0}^{i} P_{j} \quad$ for $i=0, \ldots, 20$
= Probability of a car surviving until the end of the ith year.
$=q_{0}$ for $i=0 ; q_{i}\left(\sum_{j=0}^{i-1} p_{j}\right)$ for $i=1, \ldots, 20$.
= Probability of a $=a r$ being scrapped during the ith year.
PDEC $_{i}$
$=\sum_{j=0}^{i}$ PDE $_{j}$ for $i=0, \ldots, 20$
= Probability of a car being scrapped by the end of the ith year.
$=1-$ PSE $_{i}$

TABLE A1-31
ESTIMATED SCRAPPAGE RATE ADJUSTMENT FACTORS FND FRACTION OF CARS
vilicil sirgive eacli year ey vintage (1953-1974)

$$
\begin{aligned}
& \text { cisds }
\end{aligned}
$$

1

N o

1

TABLE A1-32
estimated rlmber of cars in operatici at year end disaggregated Stic and foreign size classes
(millions of Units)
NDE

obryuasdere	opmyuasfereno	ophyuacortmo	ophruactieno	uphuvamoyeno	ophyuayotimo	opmyulditho
0,162	0.186	0.290	0,008	23.037	17.153	2.289
0.301	0.189	0,316	0,004	29.105	17.815	2.809
0.191	0.202	0.581	0.009	26.193	18.160	2,513
n, 278	0,272	0.016	0.008	21.802	19,030	?,094
$0,7 \mathrm{Ba}$	$0 \cdot 631$	0.965	0.025	23.919	10.918	2,860
0.292	0.163	0.905	0.050	36.013	18.809	3.05 n
0.602	1,258	1,012	0.115	31.011	18.093	3.209
0.112	1,050	2,035	0.153	30.939	18, As ${ }^{\text {c }}$	3,039
1.120	1.451	2.980	0.118	30.137	$17.0 \leq 1$	3.681
1.940	2,109	4,201	0.200	30.353	19.593	1,918
1,198	2,978	5.149	0.218	24.848	20.850	0.152
1.902	2,825	6,220	0.218	28.953	22.083 20.816	
2.080	3.200	1,010	0.256	21.381	20.816	0.050
2,01月	3,549	8.331	0.210	25.902	26,700	-1,900
$1,9 \%$	9,010	989	0,312	23.535	28.384	5.182
1, Pos	4.078	10.943	0.189	23.680	30.191	5.503
l.ons	5,303	11, un?	0.309	22:116	31.158	5.815
1.612	-0,098	12,911	0.912	22.103	12.643	0.018
2.141	1.001	13.211	0.912	21.501	313.565	6.011
? 3.18	8.003	11,800 10,018	00.982	21,319 21,119	30.808 30.208	9.817
9:009	8,807	15:261	0.135	21,892	33; 5×2	Sides

$L F=$ Foreign Luxury Cars CF = Foreign Compact Cars

tablé al-33

estimated number of cars in cperation at year end disaggregated oy size classfs

$$
\begin{aligned}
& \begin{array}{l}
205 \\
90 \\
862 \\
595 \\
509 \\
852 \\
10 \\
10 \\
00 \\
918 \\
59 \\
056 \\
559 \\
550 \\
188 \\
588 \\
006 \\
910 \\
080 \\
991 \\
558 \\
551
\end{array}
\end{aligned}
$$

OPMVUACTYEND

ON3A1SVRANHO

Where se° assumes the following values:
$T=$ Total Subcompact Cars
$S T=$ Total Comnact Cars MD = Domestic Mid-Size Cars

AUTOMOBILES ON WHICH USED CAR PRICE DATA WAS GATHERED

```
Domestic Subcompacts (.3745)
Pinto (.5489) Vega (.4311)
Foreion Subconidacts (.6255)
```

Catsun (.1883) MG (.0232) Toyota (.2800) Triumph (.0157j Volkswagen (.4918)

Domestic Compacts (.9431)
Barracuda (.0352) Camaro (.3571) Dart (.3247) Hornet (.0557) Maverick. (.1847) Mustang (.C559) Nova (.2467)

Foreign Compacts (.0569)
Saab (1.0)

Domestic Mid-Size (1.0)
Chevelle (.5756) Coronet (.1411) Matador (.0214) Torino (.2619)

Domestic Full-Size (1.0)		
Ambassador (.0128)	Chevrolet $(.5922)$	Ford (.2399)
	Impala $(.755)$	LID (.513)
	Caprice $(.244)$	Galaxy (.387)

Domesitic Luxury (.9196)
Cadillac (.7737) Lincoln (.1106) Corvette (.0282)
New Yorker (.0906)
Foreion : 'uxury (.080:)
Jaguar (.0594) Mercedes (.4751) Porsche (.4655)

NuTDers in parentneses refer to the share of the car in its sub-class or the share of the foreign or domestic car in its class.

TABLE A1-35

price of one to seven year old full-size cars relative to a new full-size car (1958-1974) | PU7FD |
| :--- |
| PiFD |
| .1095 |
| .0976 |
| .1002 |
| .1159 |
| .1169 |
| .1073 |
| .1338 |
| .0969 |
| .0884 |
| .1047 |
| .1213 |
| .1479 |
| .1347 |
| .1542 |
| .1355 |
| .1077 |
| .1379 | PUGFD

PNFD
.1452
.1711
$.24 j$
.1767
.1576
.1874
.1643
.1769
.1610
.1720
.1727
.1731
.1855
.1808
.1593
.1659
.1949 PU5FD
PIFD
.2246
.2404
.2213
.2403
.2525
.2248
.2727
.2470
.2172
.2428
.2246
.2306
.2368
.2099
.2178
.2285
.2585

気的

两

Pu07 148 D
0.1155
0.1234
0.1123
0.1308
0.1301
0.1315
0.1422
0.1476
0.1121
0.1264
0.1313
0.1454
0.1454
0.1423
0.1294
0.1250
0.1504

ESTIMATES (BASED ON λ ESTIMAIE) OF ThO TO SEVEN YEAR OLD FULL-SIZE

PUO6/BFO

0.1561 0.1631 0.1510 0.1710 0.1703 0.1722 1681.0
0981.0 0.1891
0.1496 0.1641 0.1692 $\stackrel{N}{\tilde{\sim}}$ 0.1799 $\stackrel{\circ}{\circ}$ $\frac{\circ}{\circ} \frac{0}{9}$ PU06/HFD $=$ Estimate of PUGFD $\begin{gathered}\text { PND } \\ \text { PND }\end{gathered}$

	PU02/RFD	PU03/NFD	PU04/NFD	Pu05/MFD
1958	0.5209	0.3854	0.2851	0.2110
1959	0.4990	0.3773	0.2853	0.2158
1960	0.4931	0.3668	0.2729	0.2030
1961	0.5007	0.3828	0.2926	0.2237
1962	0.5001	0.3820	0.2918	0.2229
1963	0.5063	0.3867	0.2953	0.2255
1964	0.5305	0.4077	0.3133	0.2407
1965	0.5099	0.3979	0.3105	0.2423
1966	0.4755	0.3562	0.2667	0.1998
1967	0.4668	0.3594	0.2768	0.2131
1963	0.4670	0.3623	0.2811	0.2181
1969	0.4551	0.3623	0.2883	0.2295
1970	0.4532	0.3611	0.2876	0.2291
1911	0.4597	0.3636	0.2876	0.2275
1972	0.4588	0.3562	0.2765	0.2147
1973	0.4521	0.3496	0.2703	0.2090
1974	0.5056	0.3967	0.3113	0.2442
Key:	$\text { PUO2/NfD }=\text { Estimate of } \frac{\text { PU2'D }}{\text { PNFO }}$		$\text { PU04/NTD }=\text { Est }: \text { nate of PUAFD }$	
	Estimate		Puos/mio	ate of PU5FD ${ }^{\text {PFTO }}$

DOiIESTIC PRICE RELATIVE (1958-1974)
Key: \quad PUOZ/NFD $=$ Estimate of PUZIO

 っ○。

TABLE Al-39
INDICES OF USED CAR PRICES, NEW CAR FRICES, AND NEW AUTO REGISTRATIONS
(All Indices Eased To $1972=100$)

YEAR	USED CAR PRICE INDIC ES $^{\text {S }}$ WEFA ${ }^{\text {3/ }}$				WEFA NEW CAR PRICE	NEW AUYO REGISTRATIONS
	CPI -	ANWP ?	PUSEDITT67	AVERAGE		
1952	90.0	--	---	---	59.9	39.2
1953	80.7	--	---	---	60.5	54.1
1954	68.7	-	---	---	60.9	52.2
1955	65.0	--	*--	---	64.0	67.6
1956	62.5	--	---	---	69.1	56.1
1957	70.0	--	---	---	74.9	56.4
1958	72.6	--	87.9	67.4	79.8	43.8
1959	81.0	--	84.6	68.2	77.8	56.9
1960	75.7	65.9	79.7	67.9	75.6	62.0
1961	78.6	67.4	78.5	70.3	75.4	55.2
1962	85.8	71.8	79.7	72.1	82.9	65.4
1963	86.9	74.4	79.9	73.6	77.5	71.2
1964	90.6	75.5	81.3	77.1	77.9	76.0
1965	90.0	73.1	80.9	77.5	80.1	87.8
1966	87.8	73.6	79.7	74.3	81.8	84.9
1967	90.5	73.9	79.5	74.5	84.8	78.8
1968	92.9	79.9	83.0	80.3	89.4	88.7
1969	93.3	82.2	85.6	86.0	92.5	89.8
1970	34.4	83.5	89.2	90.6	92.4	79.8
1971	99.7	92.8	97.5	97.1	99.3	93.9
1972	100.0	100.0	120.0	100.0	100.0	100.0
1973	106.4	111.1	101.7	103.1	103.4	105.2
1974	111.0	123.6	121.9	124.3	110.9	87.5

[^10]
TABLE Al-40

USED CAR MARKET IDENTITIES

1. Prices of New Cars (Price Excluding Taxes)
a) PNEWST $=$ USSTPUB $+0+J S S T P U T R N$
b) PNEWCT $=$ USCTPUB+O + ISCTPUTRN
c) PNEWMD $=$ USMDPUB $+0+$ ISMDPSTRN
d) PNEWFD $=$ USFDPUB+0 + USFDPUTRN
e) PNEWLT $=$ USLTPUB+O + USLTPUTRN
2. Prices of One Year 01d Used Cars
a) PUSEDIST $=$ PU/NST * PNEKST
b) PUSEDICT $=$ PU'NCT * PNEWCT
c) PUSEDIMD $=$ PU/NMD * PNEWM
d) PUSEDIFT $=$ PU/NFD \& PNEWFD
e) PUSEDILT $=$ PU/NLT * PIEKLT
3. New Car Trade-ins By Vintage and Total
a) VOLUNO1 $=0.1621 *$ OMUUANR 0.5
b) VOLUNO2 $=0.2141 *$ OMVUANR * 0.5
c) VOLUNO3 $=0.1764 *$ OMVUANR $* 0.5$
d) VOLUNO4 $=0.1407 *$ OMIUANR * 0.5
e) VOLUNO5 $=0.1050 *$ OMYUANR * 0.5
f) VOLURIGO $=0.0805 *$ OMVUANR * 0.5
g) VOLUNOT $=0.0479$ * OMVUARTR * 0.5
h) VOLUNOB $=0.0347$ * OMVUANR * 0.5
i) VOLUNOG $=0.0234$ * CMVUANR * 0.5
j) VOLUNIO $=0.0152 *$ OMNUANR * 0.5
III. New Car Trade-Ins By Vintage and Total (Cont.)
k) VOLUN $=$ VOLLNOI \& VOLUNO2 + YOLUNO $3+$ VOLUNO + VOLUNO5 + VOLUNOS

+ VOLUNOT + VOLUHO8 + VOLUNO9 + VOLUN1O
IV. Potential Used Car Market Entrants By Vintage and Total
a) VOLUPO2 $=$ SPSE2 * (OMVUANR $(-1) * 0.1621) * 0.5$
b) VOLUPO3 $=$ SPSE3 * (OMVUANR $(-2) * 0.1621+\operatorname{OMVUAHR}(-1) * 0.2161) * 0.5$
c) $\operatorname{VOLUPO4}=$ SPSE4 * (OMVUANR $(-3) * 0.1621+\operatorname{OMVUANR}(-2) * 0.2141$ + (OMVUANR $(-1) * 0.17 E 4) * 0.5$
d) VCLUPO5 $=$ SPSE5 * (OMNUARR $(-4) * 0.1621+\operatorname{OMVUANR}(-3) * 0.2141$
$+\operatorname{OMVUANR}(-2) * 0.1754+\operatorname{OMVUANR}(-1) * 0.1407) * 0.5$
e) VOLUPO6 $=$ SPSE6 * (OMVLANR $(-5) * 0.1621+$ OMNUANR $(-4) * 0.2141$ + OMUUNR $(-3) * 0.1764+\operatorname{OMUUANR}(-2) * 0.1407$
+ CMVUANR $(-1) * 0.1050) * 0.5$
f) VOLUPOT $=$ SPSET * (OMNUANR $(-6) * 0.1621+$ OMVUANR $(-5) * 0.2141$ + OMVUANR $(-4) * n .1764$ + OMVUANR $(-3) * 0.1407$ + OMNUANP $(-2) * 0.1050+\operatorname{OMVUANR}(-1) * 0.0805) * 0.5$
g) $\operatorname{VOLUPOB~}=\operatorname{SPSE8}$ * (OMVUAMR $(-7) * 0.1621+$ OMVUANR $(-6) * 0.2141$
+ OMVUANR $(-5) * 0.1754+$ OMVUANR $(-4) * 0.1407$
+ ONVUANR $(-3) * 0.1050+\operatorname{ORVUANR}(-2) * 0.0805$
+ OMVUANR $(-1) * 0.0479) * 0.5$
h) VOLUPO $=$ SPSE9 * (OPNUANR $(-8) * 0.1621+$ OMVUANR $(-7) * 0.2141$ + OMYUARR $(-6) * 0.1764+\operatorname{OMNUNR}(-5) * 0.140 ?$ + OMVUANR $(-4) * 0.1050$ - OMVUANR $\left.R_{i}^{\prime}-3\right) * 0.0805$ + OMVUANR $(-2) * 0.0470+0 M \operatorname{URNR}(-1) * 0.5,347) * 0.5$
i) $\operatorname{VOLUP} 10=\operatorname{SPSEIO}$ * (OMVUANR $(-9) * 0.1621+\operatorname{ONNLANR}(-8) * 0.2141$ + OMVUARNR $(-7) * 0.1764$ + OMVUARVR $(-6) * 0.1407$ + OMVLARR $(-5) * 0.1050+$ OMVUARRR $(-4) * 0.0805$ + OMVUANR $(-3) * 0.0479+$ OMVUANR $(-2) * 0.0347$ $+\operatorname{CMVUANR}(-1) * 0.0234) * 0.5$
j) VOLUP $=$ VOLUPOL + VOLUPO $3+$ VOLUPOA + VOLUPO5 + VOLUPO6 + VOLUPOT + VOLUPO8 + VOLUPO9 + VOLUP10
V. Fraction of Potential Used Car Market Entrants Actually In The Market VOL!IPF $=($ PURTVUUA - VOLLIN $) /$ VOLUP

V1. Total Transactions In Used Car Market By Vintage
a) VOLUTOI $=$ VOLUNOI
b) VOLUTO2 $=$ VOLUNO2 + VOLUPF * VOLUPO2
c) VOLUTOZ $=$ VOLUNO + VOLUPF * VOLUPO3
d) VOLUTO4 $=$ VOLUNO4 + VOLUPF * VOLUPO4
e) VOLUTO5 $=$ VOLUNO5 + VOLUPF * VOLUPO5
f) VOL TO6 $=$ VOLUNO6 + 'CL.UPF * VOLUPOS
g) VOLUTOT $=$ VOLUNOT + VOLUPF * VOLUPC7
h) VOLUTO8 $=$ VOI.UNO8 + VOLUPF * VOLUP08
i) VOLUTOS $=$ VOLUNOO + VOLUPF + VOLUPOG
j) VOLUTID = VOLUNIO + VOLUPF * VOLUPIO
VII. Total Transactions In Used Car Market By Size Class VOLUTse $=\sum_{i=1}^{10}$ (SHRseNR $(-i) *$ VOLUTi $)$ $i=1$
where $s e=S T, C T, M D, F D, L T$ and VOLUTi $=$ VOLUTOI, \ldots, VOLUTIO for $i=1, \ldots, 10$
VIII. Average Price of Used Car Traded By Size Class and Total
a) PUSEDRse $=$ PUSEDIse *

where $a c=S T, C T, M D, F D, L T$,
and VOLUTi $=$ VOLUTO1, VOLUTIO for $i=1, \ldots, i 0$.
b) PUSEDR $=($ VOL.ITST * PUSEDRST + VOLUTCT * PUSEDRCT + VOLUTHE * PUSEDPMD + VOLUTFD * PUSEDRFD + VOLUTLT * PUSEDRLT) / PURMVUUA
IX. Compute Expected Scrappage Weighted Average Price Eor An Oĺ Car
a) Compute Expected ("Normal") Scrappage

By l'intage for 01d Cars
SCOLDOB $=0.11703 * \operatorname{SPSE7}(-1) * \operatorname{OMVUARR}(-8)$
SCOLDO9 $=0.17195 * \operatorname{SPSEB}(-1) * \operatorname{OMVUANR}(-9)$
SCOLDIO $=0.24661 * \operatorname{SPSE9}(-1) *$ OM/UANR (-10)
SCOLD11 $=0.28619 * \operatorname{SPSE1O}(-1) *$ OMVUAKR (-11)
SCOLD12 $=0.3$ * SPSE11(-1) * OMVUANR(-12)
SCOLDI3 $=0.3$ * SPSE12 $(-1) * \operatorname{OMVUANR}(-13)$
SCOLDI4 $=0.3 * \operatorname{SPSE13}(-1) *$ OMVUANR (-14)
SCOLDI5 $=0.3 * \operatorname{SPSE14(-1)} * \operatorname{OMVAMR}(-15)$
SCOLDI6 $=0.3$ * SPSE15(-1) * OMVUANR(-16)
SCOLDI7 $=0.3$ *SPSE16(-1) * OMUUANK(-17)
SCOLN18 $=0.3 * \operatorname{SPSEI7}(-1) *$ OMVUANR(-18)
SCOLDI9 $=0.3 * \operatorname{SPSE18}(-1) * \operatorname{OMVUARR}(-19)$
SCOLD20 $=0.3 * \operatorname{SPSE} 9(-1) *$ OMVUANRi-20)
SCOLD $=\sum_{i=08}^{20}$ SCOLD:
b) Computa hieighted Average Price

```
PUOLD ={ \sum = { (SCOLDi) [\sum SHRscNR(-i) * PUSEDIse
    * exp (-(i-1) * PU/HADTsc)]) / SCOLD
```

where $s e=S T, C T, M D, F D, L T$

Definitions For Used Car Market Identities

Syrbol

OMUSANR	Number of new cars registered during the year
OPMUUAYERD	Number of cars registered during the year
Privisc	Price of a new car of class sc where $s c=S T, C T, M D$, FD, LT
Fu/isc	Price of a one year old car of class se relative to the price of a new car of class se where $s c=S T, C T, M D$ FD, LT
PU/iñDJsc	Exponentiai rate of decline for used car prices of vintage $v=i \ldots, 10$ for car of class sc where $s c=$ ST, CT, MD, FD, LT
PURINUAA	Number of used cars purchased during the year (i.e. used car market volume)
PUSEDIse	Price of a one year oid $=$ ar of class sc where $s==S T$, CT, MD, FD, LT
PUSEDR	Average retail price of a used car.
PUSEDRSC	Average retail price for a used car of class se where $s c=S T, C T, M D, F D, L T$
PUSEDW	Average wholesale price for a car traded in the whole. sale market.
SHPSCNR	Share of new registrations for a car of class se where $E==S T, C T, H O, F D, L T$
SPSE:	Fraction of new cars registered $\dot{\sim}$ years ago are still in operation at the end of the current year (SPSE: = SPSE1, ..., SPSE10)
USscPuB +0	Base plus options price for a new car of class se where $s c=S T, C D, P D, F D, L T$
USsaPUTRi	Transportation charges for a nev car of class sc where $s c=S T, C T, N D, F D, L T$

Symbol	Definition
VOLUN	Number of new to car car trade-ins
VOI.UN:	Number of new to new car trade-ins which are cars of vin tage i (VOLUNi $=$ VOLUNOI, VOLUNIO)
VOLUP	Number of cars which have been traded in by their original owners, have survived, and are potentially in the used car market.
VOLUPi	$\begin{aligned} & \text { Vintage year breakdown of VOLUP (VOLUPi }=\text { VOLUPOI, } \ldots \text {... } \\ & \text { VOLIO) and } \\ & \qquad \text { VOLUP }=\sum_{i=1}^{0} \text { VOLUP } i \end{aligned}$
VOLUPF	Fraction of VOLUP which is traded in the used car market.
VOLUTOC	Number of cars purchased in the used car market which are of class $s c$ where $s c=S T, C T, M D, F D, L T$
VOLUTi	Number of cars purchased in the used car market which are of vintage $:($ VOLUT $i=$ VOLUTOI,\ldots, VOLUTIO $)$, and $\text { PURMVUUA }=\sum_{i=1}^{10}$

TABLE Al-42

MUMBER OF FAMILIES LHD UNRELATED INDIVIDUALS BY STATE. 1970 WND 1972

NGFY72	NCFY70	RPreyyiz	NPRUYTS
. 16518	. 15348	. 14624	. 13192
. 26036	. 24815	. 072771	. 060373
. 19604	. 18383	. 056320	. 049131
. 11303	. 10741	. 033797	. 569273
1.4404	1.3910	. 50268	.44243
. 24621	. 23667	. 066975	. 058673
. 79269	. 76765	. 22918	. 20228
4.7188	4.6096	1.7126	1.5249
1.9162	1.8388	. 50752	. 4×397
3.6894	3.0111	. 91512	. 81291
2.7533	2.6911	. 78925	. 70309
1.3573	1.3217	. 38194	. 33650
2.8733	2.7942	. 93889	. 83215
2.2508	1903	. 64576	. 57018
1.1220	0.0775	. 35033	. 30562
. 95419	. 92133	. 32609	. 29699°
. 74499	. 71778	. 22825	. 20054
1.2430	1.2048	. 40198	. 35509
. 15463	. 16824	. 038732	. 038734
. 16819	. 16194	. 063220	. 043220
. 99172	. 37415	. 11253	. 11253
. 59705	. 58185	. $167: 3$. 16733
. 14498	. 13892	. 034128	. 034128
1.0219	. 97414	. 25660	. 25600
1.2110	1.1623	. 28661	. 28561
. 47540	. 45449	. 10110	. 10110
1.3696	1.2925	. 28410	. 24796
. 56305	. 62869	. 12835	. 11092
1.2052	1.1498	. 29782	. 25335
1.9923	1.8114	. 59757	. 56312
. 86153	. 82522	. 19694	. 17153
1.0806	1.0244	. 24967	. 21399
. 90686	. 87405	. 19484	. 17089
. 55280	. 53 984	. 12075	. $106{ }^{\circ} \mathrm{O}$
. 53611	. 50520	-. 13228	. 11359
. 91067	. 87277	. 22238	. $19: 24$
2.9636	2.8181	. 82213	. 71132
. 18005	.17181	. 057665	. 050169
. 19326	. 17985	. 055090	. 046622
. 085613	. C 49703	. 026839	. 023121
. 59565	. 54716	. 21449	. 17958
. 25130	. 24274	. 062927	. 053279
. 49393	. 43839	. 15875	. 12541
. 27007	. 24974	. 073025	. $0615: 5$
. 13764	. 12417	. 056317	. 085305
. 87898	. 86254	. 33179	. 29574
.5i608	. 54248	. 21270	. 10255
5.2031	5.0013	2.2226	1.9483
. 71032	. 67925	. 21529	. 18764
. 073315	. 066670	. 020497	. 015957
. $18: 24$. 17073	. 055901	. 047211
53.295	51.159	16.558	14.531

$\frac{.75200}{}$
1.2250
. 77400
. 46000
5.7350
. 95900
3.6800
18.3677.3490
10.782
5.2860
11.244
9.0130
4.5260
3.8770
2.8840
4.7470
. 63400
. 68500
1.5280
2.2580.57100
4.7650
1.7950
5.2210
2. 6.380
4.7330
7.2470
3. 2050
6.0320
3.5210
2.2500
2.0590
3.7350
11.504
. 33600
2.3540
1.0750
1.96321.1270
3.4180
2.1850
20.611
2.6530
32500
. 5160
22023

 Suse and well intome tol irsuremonts

 verges -ri: leverl

- Prasm -

This table reproduced from Mark K. Sherwood, "Family Sudgets and Geocrapnic Differences in Price Levels," Monthly Labor Review, Vol. 98, No. 4 (Âpril, 1075) P. 10.
State Index
 State Index
Before Rebasing

CALCULATION OF 1972 RELATIVE PRICE INDEX BY STATE Non-Metropolitan
 TABLE AI-44 Helghted
SMSA Index
02.000 100.000 100.000 113.022
111.500 잉
oi
응 응 107.068 둔 $\stackrel{n}{\stackrel{n}{0}}$ U
i
100.000 $\begin{array}{ll}\text { a } \\ 0 \\ 0 \\ 0 & 0 \\ \text { a }\end{array}$ 96.000 97.621 95.000 95.000

8
$\stackrel{8}{8}$

 8
 New liompshire
Vermont Massachusetts
 Connect!cut New York New Jersey Pennsylvania Ohio Indiana lllinols Michigan Wisconsin

 g Missouri North Dakuta South Dakota Hebraske Kansas | 0 |
| :--- |
| 0 |
| 0 | 믈

[^11]

TABLE AI-44 (Cont.)
Percent State \quad Non-Mecropolitan
Pop. in SHSA's Index
 σ 웅 Weighted
SMSA Index 45.347
47.715 83.994 46.400 59.847
61.797 <0.722 38.366
62.546 76.719 24.469 15.973 0.0 72.250
33.336 74.416 79.494 80.675 72.220
61.354 93.172 55.195 43.753
81.568 $\bar{\sigma}$
$\underset{\sim}{\sim}$
$\stackrel{y}{2}$

TABLE A1－45
INCOME DISTRIBUTION DATA FOR 1970 AND 1972. BY STATE AND U．S．TOTAL

PERIS＊Y72

PER15＊Y70
29，538
11．629
17，785
10.015

25，790
19．281
30,362
42.968
30.252

18,347
22．498
20.154

25．931
2月．220
20.303

21．174
15.730

18，061
16.120
12.853

16．123
16，415
25，000
30,235
22．188
11.069

25，100
11.200
17.300
15.100

25．200
18．800
31.100

20．400
29．500
18．200
21.600

14．400
ご，400
26．700
19.700

20,300
16.200
17.000
12.800

11,500
14．900
15．800
22,300
$\therefore 8.600$
19.700
4.6000

HEM10＋Y72
53，406
35，272
4R． 152
42,434
50.157

4 $1,1 \in 0$
61.182

BC，os 1
no， 080
45，682
45，311
40.709
54.775
54.010
50.002
40.190
41.51 ？

43．75h
3R，542
33.540

40,935
41.794

42,511
58.714
41.274
31.240

PEKIO Y Y 10
47.700
35.100
47.600

42，200
50.100
47.900
63.100 33,900 54,600
4h， 400
52，400
49,100
56,700
57．2．00
50.400
49.500

42，800
42．400
34.200
31.800
59.300
40.500
31.400

36，400
43,000
29，700

TABLE Al－45（Cont．）

PtK1S Y Y 72
13.480

12，245
16．875
18，946
12.609
12.806
12.924

10,903
4．2．355
13.024
17.492

14,742
14.090
10.504
22.074
14.490

20．151
$1 \mathrm{H}_{1} 127$
26.062
25.465
：9，058
2．1．020 13．810
$3 \mathrm{H}, \mathrm{KOL}$
34.310
22.380

PERJS＊Y70
11,500
11.000
15.100

16,700
11,600
11.500

11,200
8.3000
8.0000
12.700

16,500
13,600
13.100

15,600
19，700
10.800
18.1000
16.900

25．200
22．800
18.000
26.100
12.1700
37.700
32.600

20．600

PEP1O\＆Y7Z
30.382

34,848
40,664
42．178
34.121
$33 . \mathrm{Han} 4$
33.504

25．559
25.844
34.140

48．234
40.150

38．74k
43.495
50.655
36.019
46.810
46.191

55，490
b3．670
47：473
S4．904
35.353
n 3.983
60,028
49，ヶだロ

Pf．K10＋Y／0
33.100
33.100
31.900

36． $\mathrm{h}(10)$
32.500
32.000
31.200

24．701
24．200
35．0．00
54．400
sh．400
31，400
42， 200
46， 5001
35.800
44.4011

44．ñol
50，holi
S6．900
46．200
$34.10: 1$
34． 104
＋2．s．1：

41，i＂い

TABLE A1-46

:NTERPOLATION OF MTWHADT

	RPUT/MTWNAPT (Ratic)	$\begin{gathered} \text { RPUT } \\ \text { (Mill. Pass.) } \end{gathered}$	MTHNAPT (Mill. Horkers)
1947	2.0638	18287.0	17.721
1948	2.0533	17312.0	16.863
1949	2.0427	15251.0	14.932
1950	2.03222	13845.0	13.626
1951	2.0216	12881.0	12.743
1952	2.0111	12022.0	11.956
1953	2.0005	11036.0	11.033
1954	1.9900	9858.0	9.9075
1955	1.9794	9189.0	9.2844
1956	1.9689	8756.0	8.8943
1957	1.9583	8338.0	8.5153
1958	1.9478	7778.0	7.9865
1959	1.9372	7650.0	7.8978
1960	1.9267	7521.0	7.8071
1961	1.9161	7242.0	7.5589
1962	1.9056	7122.0	7.4748
1963	1.8950	6915.0	7.2980
1964	1.8845	6854.0	7.2741
1965	1.8739	6798.0	7.2553
1966	1.8634	6671.0	7.1600
1967	1.8528	6616.0	7.1414
1968	1.8423	6491.0	7.0466
1969	1.8317	6310.3	6.8899
1970	1.8212	5931.7	6.5141
1.971	1.8110	5497.0	6.0707
1972	1.8008	5253.3	5.8344
1973	1.7907	5293.6	5.9123
1974	1.7807	5505.9	6.2963
1975	1.7707	5625.8	6.3543

TABLE Al-47
INTESPOLATION OF MTWRACTH

	MTWHAOTH/NEHT (Ratio)	$\begin{aligned} & \text { NEHT } \\ & \text { (Thou. Empl.) } \end{aligned}$	MTWNAOTH (Hill. Workers)
1947	. 37069	57038.	21.143
1948	. 36028	58343.	21.020
1915	. 34987	57651.	20.170
1950	. 33946	58918.	20.000
1951	. 32904	59961.	19.730
1952	. 31863	60250.	19.19%
1953	. 30823	61179.	18.857
1954	. 29781	(10109.	17.901
1955	. 28740	¢2170.	17.868
1956	. 27699	63799.	17.672
1957	. 26658	64071.	17.080
1958	. 25617	63036.	16.148
1959	. 24576	64630.	15.883
1960	. 23535	65778.	15.481
1961	. 22493	65746.	14.788
1962	. 21452	66702.	14.309
1963	. 20411	67762.	13.831
1964	. 19370	69305.	13.424
1965	. 18329	71088.	13.030
1956	. 17288	72895.	12.602
1967	. 16247	74372.	12.083
1968	. 15206	75920.	11.544
1969	. 14165	77902.	11.035
1970	. 13124	78627.	10.319
1971	. 12487	79120.	9.8797
1972	. 11786	81702.	9.6294
1973	.11110	84409.	9.3778
1974	. 10479	85936.	9.0052
1975	. 09883	84783.	8.3791

TABLE AI-48

1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1950
1961
196 ?
1963
1964
1965
1966
1967
1960
1969
1970
1971
1972
1573
1574

CONSTRUCTION
NPMETNUM
(M111. Persons)
84.834
87.292
89.822
92.425
95.103
97.859
100.70
103.61
106.62
109.71
112.88
115.29
117.75
120.27
122.83
125.45
128.13
130.86
133.65
136.3

1: \because
145.5 5
151.68
154.05
154.96

NPR
(Mill. Persons) (Percent)
$151.87 \quad 55.860$
$153.98 \quad 56.690$
$156.39 \quad 57.434$
158.96
58.145
$161.88 \quad 58.748$
165.07
59.284
59.906
60.526
61.221
61.933
62.271
63.005
63.386
63.807
64.262
64.824
65.514
66.274
67.029
67.784
58.406
70.582
72.844
73.6:4
73.310

APPERDIX A 2 DISCUSSIOI OF MODEL EQUATIONS

A 2.1 REVIEW OF RASIC STRUCTURE

The HEFA Auto Demand Model is a long-run equilibrium model. Let us define the nature of this equilibrium and analyze departures from it. If all forces acting on the auto market were held constant, the model would tend towards an equilibrium state with actual stock sonstant and equal to desired stock, total registrations and scrappage constant and equal, and the class-shares of stock, new registrations, and scrappage, also constant and equal.

Now let the desired stock rise. This would (directly) occur due to a rise in income, a fali in auto operating or purchase costs, increases in licensed drivers, increasing urbanization or a decline in non-auto modes of commuting. New registrations would then increase sharply, and the scrappage rate would also fall. Thereafter, new registrations and total scrappage would oscillate more and more gradually absut their new (higher) equilibrium levels.-

Should a change occur which alters the composition of the desired stock, such as changes in auto costs, income and its distribution, family size, geographic shifts in population, or changes in age structure, tinen the new registrations and scrappage shares of the classes would

[^12]shift. Again, the initial response would be proportionately greater than the initiating desired share changes.

Here the response is more complex because total desired stock also changes. Suppose a shift towards smaller cars occurs, then the average cost per mile of the desired stock is reduced, increasing desired stock and initiating the pattern of aggregate responses already outlined.

In certain cases there would be a disturbance from a different direction. For instance, an increase in the price of gasolire would reduce vehicle miles zraveled. A fall in mileage per asto would tend to reduce scrappage, reducing new registrations commensurately. Conversely, increased mileage per vehicle wouid indirectly induce an ircrease in new car sales.

A 2.2 CROSS-SECTION EQUATION ESTIMATES

The equations for desired stock per family and desired shares by class for the five size categories were estimated cross-sectioneily using 1972 data for 47 states, excluding Oklahoma, Alaska, Hawaii, and the District of Columbia. The data for 0klahoma are incomplete, and the others were excluded due to their special characteristics.

We elected to use 1972 as an "equilibrium" year. It was immediately prior to the oil crisis, and the economy was reasonabiy stable with moderate unemployment and inflation. Pc lution control had yet to make a major impact, and smaller domestic cars had been present in the market for several years. Therefore we assumed actual stock (by state) was equal
to the desired level, and we approximated the desired shares by averaging new registrations shames for 1971-72.1/

The estimated equation for desired stock per family unit is presented on page A2-25. Estimates were also made in linear form, $2 /$ and with the percentage of families earning $\$ 15,000$ or more in $1970 \$$ (PER15+) in "!evel" form as opposed to the "odds" formulation adopted. The "odds" variable jielded a slightly higher statistical significance.

Since we were concerned with an equilibrium relationship it seemed reasonable that a "pemanent income" concept would be the most appropriate. This form implies that families gradually adjust to a given change in real disposable income ${ }^{3 /}$ The estimated relationship is positive as expected and statistically strong, the income elasticity being 0.56 .

As discussed in Chapter 3 we hypothesized "income saturation", i.e., above a certain income level further increases in income would not cause a family to increase its stock at the previous rate. Therefore, PER15+ enters with a negative sign, moderating the effects of income fiuc:uations, 5/ $^{\prime}$ the elasticity being roughly 0.13 (with the "odds" form the elasticity varies with PER15+, being higher than the coefficient when PER15+ is less than 50\%)

[^13]Our measure of combined purchase and operating costs, capitalized cost per mile, is used here as an equilibrium concept, being the average of the ciass costs per mile weighted by their desired shares, i.e., it is the desired fleet cost per mile. The sign is negative, as hoped, with a reasonable elasticity of 0.2 . The statistical power is somewhat low, probably due to the fact that because of data limitations capitalized cost per mile by class has a somewhat limited variation across states. l/

Licensed drivers per fámily has a strong positive impact. More licensed family members implies a greater usefulness of additional cars. This variable is clearly significant in explaining variation across states, evell after allowing for incume levels.

Although we experimented with a variety of measures reflecting transportation system characteristics, only the numbers of people (per family) using non-auto transport to work (MTWNA) was found to be significant, albeit not overwhelmingly. $2 /$ Its elasticity is very low, only -0.05 , so that very large movenients in MTMAM/FM are required to significantly affect desired stock.

Finally, the metropolitan population is positively associated with desired stock. NPMET is defined as the percentage living in SMSA's, and this finding therefore reflects the large suburban populations, with a nigher number of cars per family, resident in states with large conurbations.

He experimented a great deal with the specifications for the desireu

[^14]shares by size-class. The "odds" form that we adopted for the dependent variables has the desired property that the predicted share will lie between 0 and 1 . The greatest difficulty was experienced in modeling the small car shares. The approach we eventually adopted was to model the combined subcompact and compact share and then to estimate the subcompact part of the combined share.

This procedure not only produced a better 'fit' in the cross-section but also was much more reasonable when simulating over time. It is possible that this finding implies a closer substitution between subcompacts and compacts than, say, between compacts and midsize. Having adopted this approach for these classes we experimented with a similar treatment for mid-size and full-size, but this yielded very poor results.

The relative capitalized cost per mile term appearing in all the desired share equations (see page A2-25) is of the form own capitalized cost per mile relative to the desired share weighted average of all other classes' capitalized costs per mile. Thus in the case of subcompacts this reduces to a simple ratio of subcompact cost per mile to compact cost per mile.

In looking at the sensitivity to costs, it should be born in mind that changes in the capitalized cost per mile nill be fairly small relative to initiating changes in, say, purchase prices or the price of gas. $1 /$

In terms of elasticity (all of which are negative as expccted, see page A2-4) we observe the greatest sensitivity for full-size, and subcom-

[^15]pacts versus compacts, both raving elasticities (evaluated at the mean share values; of over five. Next in magnitude come the combined smallcar, and mid-size, with elasticities of 1.5 to 2 . Finally, the luxury class hes a very low cost elasti=ity of less thin 0.5. The coefficients for luxury and the combined class have substantially lower statistical power than the others.

The second variable of critical overall importance is the relationship between income per :amily and average cost per mile. If all costs per mile increased in the same proportion across the board one might expect some "trading hown" to take place. Equally, increasing incomes relative to costs implies increasing affluence. He would thersfore expect fuil-size to the positively affected (conceivably, luxury could be also) and smallcars negatively affected. Mid-size is indeterminate 'a priori', because general inflation would imply gains from full-size but losses to compacis.

This is indeed the pattorn we found (again, see page A2-27), with a full-size elasticity of +0.55 , and for small-cars an elasticity of -0.74 . Mid-size has a slight negarive net effect (-0.13), and subcompacts has an elasticity just under half that for the joint small-car class (-0.27). This income effect was statistically significunt everywhere except mid.size, where it is weak, and luxury, where it was completely insignificant.

The last economic activity variable to have an impact is income distribution--PER15+. It has two effects. First it tends to shift preferences from full-size to luxury, a logical result. Secondly, the greater the proportion of higher income families the larger the small car share. This again is logical, reflecting the second car status of many subcompact
and compacts cars (PERijo was insignificant in the separate subcompact and compact equations initiaily tested).

Turning to the demographic effects, the proportion of families with three or four members tends to increase the mid-size share at the expense of full-size, these being almost exactly offsetting impacts. Full-size is positively affected by the proportion of families with five or more members, this relationship being somewhat weaker. The conclusion is intuitively appealing: larger families buy large cars, smaller families tend to prefer mid size cars.

For smaller cars we find the younger age group (from 20 to 29) positively effects the combined share, as well as a weaker preference for subcompacts within the small car share. Running costs and their "sportier" image may well be factors here. A little surprisingly, licensed drivers per family tends to increase subcompact's share relative to compact. This may indicate the purchase of more subcompacts as third cars. Finally, metropolitan residents have a slight preference for luxury cars (note that IIPMET is not logarithmic because of being zero for a few states).

The regional dumy variables were persistently highly significant, irrespective of the numbers of types of economic and demographic variables we included in the specifications. They may partly reflect differing driving habits that we could not estimate due to data limitations; they may reflect cost differences that we were forced to assume away in computing cost per mile; or "rity may in fact accurately represent systematic regional taste differences.

We find New Englanders I/favor smali cars but purchase fewer luxury,

1/ The regions used are the Census definitions. Using state abbreviations: New England is ME. MH, VT, Min, RI. CT; West South Central is AR, LA, TX; ifountain is MT, ID, W'Y, CO, MM, LZ, UT, MV, and Pacific is WA, OR, CÁ.
while West South Central buyers follow an opposite pattern. Mountain and Pacific Region residents are strongly biased towards small cars, especially subcompacts. Fewer mid-size cars are purchased in the Mountain Region.

A 2.3 TRANSLATION TO TIME-SERIES

Due to its importance, the estimation of the 'historical' values for desired stock and its composition was discussed in detail in Chapter 3. The adjustments made in the predicted shares were necessitated by the varying model offerings over the earlier period, while for the total stock we had to adjust for the asymetric influence assigned to PERI5+.

What we might do at this point is to briefly apialyze the imapets over time of the deteminarts.

Both licensed drivers per family and conmuting trends have reflected the autombile's increasingly important role in society, and have made modest contributions to the growth of desired stock per family. It is unlikely that either will play a very important future role.

A major positive infiuence has been pemment income, which has increased strongly from its 1958 low, falling in 1969-70 and again in 1974-75. Because of smailer families and more singie individuals living separately, future family income growth may be less rapid than in the past. The offsetting impact of PERI5+ only became very significant during the 1960 s, after rising rapidly from very low 1950s levels. It may also be expected to grow at quite modest rates.

A significant offset to income has come from rising real average capitalized cost per mile. Costs by class have risen by amounts varying from over $75_{\%}^{\circ}$ to over 100°, significantly more than the 70% rise in overall consumer prices, especially during the 1970s. Moderate continued growth in real auto costs would seem probable.

The metropolitan population has risen from 60° in 1959 to 73° in 1974, making a not-insignificant contribution to desired stock growtr. Like licensed drivers per family, the scope for continued growth is limited.

All classes have tended to share fairly equally in cost increases, with importe substantially cutpacing domestics (their costs per mile were initially lower). Taking the period as a whole, therefore, relative costs have probably been fairly neutral on balance.

The same is issentially the case for income relative to cosis, although, like relative costs, short-run swings have undoubtedly caused large shifts in class shares.

The proportion of families with five or more members rose through the mid-1960s, favoring larger cars. Since then it has fallen sharply, and will continue to do so. Families with 3 or 4 members fell slowly throughout the sample period. The same trends reducing the larger family share may stablize this decline, limiting iull-size growth.

Finally, the population between 20 and 29 years old grew strongly throughout most of the period, spurring small-car sales. We already know that by 1995 this population group will have substantially declined,
tending to reduce the small-car shares.

A 2.4 TIME SERIES EQUATION ESTIMATES

A 2.4.1 NEW REGISTRATIONS AND SCRAPPAGE

The philosophy behind the equation specifications for both new sales and scrappage is that these variables should closely respond to movements in desired stock, if the latter is indeed a meaningful concept (as estimated by the desired stock equation). I/

One would also expect that a 1% change in desired stock would induce greater than 1% changes in both new sales and scrappage. The other variables included in the equation are primarily "speed of adjustment" factors.

The equations for total new registrations and scrappage are presented on page A2-30. In both cases the dependent variable is expressed as a "rate". New sales are scaled by the previous year stock less current year scrappage, while scrappage is correspondingly scaied by previous stock plus current new sales. 2/ This technique thus represents each flow relative to the stock that it is atgmenting or decreasing.

Clearly new registrations and scrappage are highly simultaneous. Simultaneous estimation, however, yielded results indistinguishable from

[^16]ordinary least syizres. This characteristic was, happily, a common occurrence whenever we applied two- or three-stage least squares techniques to model equations.

In both cases the principal determinant is desired stock relative to actual stock excluding the dependent variable. Thus the rate of new car sales and the rate of scrappage are functions of the 'gap' between desired and actual stock. Both new sales and scrappage respond strongly to movements in desired stock, with elasticities (positive and negative, respectively) of just under 4.

New registrations also fluctuate in response to income variation-r.urrent year income relative to permanent income. The high ccefficient is misleading--since current real disposable income per farily has a weight of 40% in the deromiriator orly a sharp change in income relative to past trends will substantially affect the new-car sales rate.

Finally, consumer resistance to sharp increases in purchase prices is indicated by the price index of current to lagged prices (holding the sales-mix constant) which has an elasticity of -1.3.

The scrappage rate is strongly affected by the average age of stock, as it must be, and a strong influence is also exerted by changes in vehicle miles traveled per auto. Increasing utilization of the stock thus increases scrappage, with the iargest effects occurring with 1 and 2 year lags.

Purely cyclical effects derive from the remaining two variables. The scrappage rate falls slightly when unemployment rises; and if old
car prices rise relative to a scrap metal price index, the rate is again slightly reduced.

As noted in Chapter 3, the philosophy behind the new registrations shares equations is simple. Sales by class respond directly to changes in desired stock shares at a rate proportional to the divergence between iitual and desired stock. Although simple in concept, these specifications were statistically very successful aad possess interesting dynamic properties.

The equations are presented on page A2-32. Note that the TMscK-SC terms are defined analogously to the denominator for total new regis. +ions discussed above, i.e., they are last year's stock less current ss.g^{7} for the class as a share of the total. We estimate the functions using as the dependent variable the difference (in logs: the ratio) between the new sales share and the desired stock share, since in equilibrium these must be equal. Transferred to the RHS this constrains the coefficient to be one.

Holding the shares of stock ?ess scrappage hypothetically constant, we see that the initial response to a desired share change is substantially greater than one for each class. For small perturbations (since both are in "odds" form) the elasticities are equal to the coefficients. Therefore, a 1% increase in the desired share would induce a 1.4% increase in the samll car new sales share, a 1.7% increase for subcompacts' share of small car sales, 1.7_{f}° also for luxury, 1.8° : for full-size, and a 1.9% increase in the mid-size new sales share.

Initially there would be no real change in the share of previous stock less scrappage, but this would then rise with increased new car sales, progressively reducing the gap between actual and desired stock shares and thus moderating the new car sales response. Typically new car sales will overshoot the equilibrium point, so that the adjustment pattern to a one time shift in desired share is a damped oscillation about the new equilibrium share.

Scrappage by c!ass and hence scrappage shares are compated by identity given new registrations and the scrappage rates thet were developed (see Appendix Al), since these rates are equal across classes.

As regards the division between foreign and domestics, the behavioral relationships estimated were judged to be inadequate for forecasting purposes. Our first approach was to estimate the domestic share of the size-class (for suhcompacts, compacts, and luxury) with our 1972 cross-section data.

Reasonable results were obtained but these produced unacceptable time series simulations. The estimated desired domestic subcompacts share went to zero for 1968 back, and \vdots amped to 50% for 1273; domestic compact's share fell to under 20% for 1968 back then rose to 99% in 1974 ; and the domestic luxury share lies consisteritly below the actual sales share, falling as low as 71% in 1958 (when the sales share was 93%). These equations are presented on page 22-34.

We considered that this approach was conceptually invalid as well as empirically uniworkable. Domestics and foreign cars compete in
:erms of actu.l sales ro the consumer who has already decided to purchase a particular size-cliss vehicle. It therefore may not be theoretically sound to estimate a "desired" domestic share.

Trerefore, time-series equations were estimated for the domestic shares of new registrations by class. Here we found tremendous instability in terms of the behavioral content. Domestic shares--especially for sub-compacts--have undergone such wide fluctuations that it appears impossible to sustain the hypothesis underlying time-series regression analysis: vis. that there exists a stable underlying set of economic relationships.

We did obtain equations that fit the sample period (see page A2-36), and which looked reasonable in terms cf relative costs per mile, and the use of variables attempting to capture the changes in model offerings for subcompacts (the lack of domestics pre-1970), and service facilities for compacts and lixury (the dealership variables).

The elasticities with respect to the included exogenous variables proved to be the stumbling blocks. Very small changes in assumptions produced huge swings in the shares, making these equations unmanageable and their implied content dubious. Thcse equations were therefore reluctantly discarded. The marketplace competition between foreign and domestics has changed so radically in nature from the 1950 s and 1960 s that we cannot capture the economic determinants.

A 2.4.2 VEHICLE MILES TRAVELED

Our approach here is to estimate vehicle miles per family in terms of the utilization of the stock, that is, VMT does not (directly)
detemine the size of the stock or additions to it, but does involve its intensity of use. In this case we must deal with the age distribution of the stock, since newer cars are driven more miles than old ones and running costs, gasoline and repairs especially, also vary by vintage. The VMT equation is given on page A2-39.

To allow for the impact of a changing aof distribution we took our estimates of mileage by vintage for 1972 used in computing the capitalized costs per mile. I/ These constant miledge weights were then applied to the estimates of mid-year stock by vintage over time and summed to obtain an index of vehicle miles (WTDMVINT). This reflects variations in mileage due solely to fluctuations in age-composition. It is an index that equais the actual 1972 mileage (VMT/WTDMVINT $=1.0$ in 1972), and it diverges atove actual VMT prior to and aftor 1972.

The real gas cost per mile for the fleet is c" pputed using a vintage-weighted fleet fuel efficiency measure, AVMPGVIMT. We first computed average class mpg as a weighted sum of city and highway, the weights varyine over time (urban driving has increased its share steadily). Then we used new registrations in the year of sale to weight each class to form an overall average by vintage. Thus, for 1974, the ten year old vintage class weights were the 1964 levels of new registrations. ${ }^{\text {2/ }}$

[^17]Finclly, these averages were weighted by each vintages' share in that year to obtain the fleet average over the entire period. The overall average therefore reflects changes in city and highway mpg by class, changes in the urban fraction of total mileage, changes in fleet composition by class, and changes in the stock age-distribution.

Real gas cost per mile has a strong negative impact on mileage per family, the elasticity being -0.24.- We also estimated a repair cost variable--along similar lines to AVMPGVINT--but this prnved to be insignificant, probably because they vary as much with time as with mileage--at least for the 'typical' family.

Once again we found an interaction between income and income distribution. This time the results indicate that mileage per family tends to be positively related to income distribution and negatively affected by the level of income. Since PER15+ normally will respond more rapidly to current income change than RDIP4/FM, the net effect of an income increase will usually be positive (and vice-versa).

A 2.4.3 MILES PER GALLON

The relationships for miles per gailon by class are estimated in the same fashion as those estimated using model-specific data. Our estimates of mpg by class are regressed on the class-average inertial weight, engine displacement, transmission type, and fraction of the

[^18]class with 4 or 6 cylinders. Tre equations are run across all clajses, over the period 1948-74, I/ using a "stacked" regression technique which constrains the coefficients to be the same across classes (see page $22-40$).

The results are very close (as expected) to the initial modelspecific estimates. ${ }^{2 /}$ The predicted class mpg's are appropriately weighted to yield average mpg by class, domestic mpg, foreign mpg, and average ntw and existing fleet mpg.

Also estimated a-e very simple "linking" equations between our estimates of actual driving mpg (derived from Corisumer Reporis) and the EFA "laboratory test" measure. Since we wished to infer EPA results from our class mpg estimates, the equations are estimated with the latter as the dependent variable (no "causation" is implied!)

We used data for all cars tested by the EPA and Consumer Reports for 1975 and 1976 that had the same engine and transmission. $3 /$ We then translate these equations directly by substituting our class mpg projections for the independent variable to yield EfA projections by class, adjusting the intercept in the case of significant variations by class.

The results are reasonable (see page A2-43), with the higher EPA city estimates clearly indicated, and some small (but significant) divergences between classes, with elasticities (evaluated at the mean) of virtually one in both equations. These relationships are limited. The

[^19]sample may not be very representative--Consumer Reports tends to focus on more "utilitarian" models, rarely reviening luxurv or 'sportier' cars. The EPA fails to indicate what, if any, optional equipment (or type of tire) was or the vehicle. Note also that the model data only cover two years. I/

The class city and highway EPA estimates are similarly aggregated :o yield the same neasures as the original mpg values. We also project an average for domestics computed using a constant 55° urban driving fraction.

A 2.4.4 NEK CAR PRICES

In the model we distinguish the four urice comonents: the 'stripped' lease purchase, plus opition: expenditures, plus transportation, plus sales taxes. The average tax rate is projected exogenously, but the others are predicted endogenously using the estimated behavioural relationships discussed in this section. Like any other endogenous variables, these prices may be exogenised if desired.

The base and options prices for domestics were viewed as mark-ups over cost. A production cost index (PINPUTA) was developed, being a weighted sum of input prices where the weights are the 1972 input-output coefficients for the autos sector.

We elected to model the average $2 /$ base and cotions prices acioss all classes. The prices by class siowed a strong tendency toward propor-

IT We found no change in the relatior:ship detween 1975 and 1976 . Note that the EPA procedures prior to 1975 were very different.

2/ Fixed-weighted by the 1972 new registrations shares.
tional movements over time. There tend to be unique year to year competitive forces that will temporarily restrain price increases for a class, but ultimately each raust cover its production costs, and make its conitribution to overhead and profits.

The results were very reasonable (page A2-45). For base prices the elasticity is very slightly below unity, which is the hypothesized result. Further, prices are also affected by the change in costs, with an elasticity of 0.43 . This may reasonably be interpreted as an "expectations" effect. If the rate of inflation accelerates, prices are increased slightly more in order to anticipate faster inflation.

For the options price the cost index shows an equally strong relationship. The elasticity of 0.76 reflects the fact that options prices have tended to fall relative to other costs. The class prices for both are driven off the two averages by percentage rotios which are essentially fixed or exogenously specified. Thus future changes in relative class positions may be simulated.

For foreign base prices we -onstructed a weighted index of export prices and used this as the independent variable. The export price indices for the major importers, Japan, Germany, Italy, France, U.K., and Sweden, were weighted by their annual shares of imports. Here the price elasticities were allowed to vary by class (page A2-46). For subcompacts the elasticity was 0.7, for compacts 0.9 , and for luxury 1.05 , which seens a reasonable relative ordering.

Consumers expenditures or options were estimated in a ciassical
demand approach as determined by income and prices. The general form adopted for these equations used our permanent income per family measure as the income term, and the fixed weighted average maximum options price relative to the overall consumer price injex was used as the price variable.

In each case the dependent variable is the ratio of options expenditures by class relative to the class maximum options price. These "shares" are estinaied in "odds" form so that actual expenditures may never exceed the maximum options cost. Unless some completely new options are added in the future, making our estimated 'maximum' cbsoiete, these values should represent a ceiling for expenditures.

Permanent income is significant in each case, with coefficients ranging from 1.7 to 2.9 - subcompacts being the highest. In most cases RDIPA!fM was marginally superior to current period income (RDI/FM). Since a common specification was considered desirable it was adopted for all equations. Almon Lags on RUI/FM were less successful in terms of statistical power when tested for each class.

The average 'real' maximum options price was everywhere highly significant, with coefficients renging from 4.6 (for subcompacts) to 6.0 (for mid-size). Again, we used the average price in the interests of having a consistent specifica^ion across classes.

Interestingly enough, after allowing for the sometimes limited offerings (and sales) in the earlier part of the sample period (subcompacts and compacts especially, of course), the average price
series was statistically at least as good as the 'own' price series for all the classes, supporting the previous observations made above.

Since the dependent variables are "odds" the elasticities are not readily apparent. For subcompacts, the income elasticity is 2.5 and the price elasticity is -3.9. An additional variable that is required for subcompacts was PER15^. This effect car be interpreted in a similar fashion as previous?y. Its elasticity is -0.7 . Uhen tested for the other classes, PERi5+ was not found appropriate, an interesting result.

The income elasticities for compacts, mid-size, full-size, and luxury were 1.4, 1.1. 0.9, and 0.6 respectively. The corresponding price elasticitits are $-3.6,-3.7,-2.7$, and -1.2 , respectively. These results seem reasonable.

The final componerts of pre-tax total purchase costs are transportation charges. These were estimated for each class as a straightforward function of the U.S. price index for transportation. For the subcompact, compact, and luxury classes the estimation was constrained such that the price elasticities were equal for foreign and domestic costs, thus the joint estimation leaves only the intercept free to vary (See page f 2-56).

In each case the relationship with the transportation index was very strong. The elasticities all lie between one and two: from lows of 1.19 and 1.15 for subzompacts and luxury, respectively, to the essentially equal levels of $1.8,1.6$, and 1.7 for compacts, mid-size, and full-size.

A 2.4.5 USED CAR PRICES

Given the limitations of the data, and the size of the modeling effort involved in estimating prices by vintage, our approach was to simplify the problem as much as possible. Our fundamental hypothesis is that prices by vintage for a particular class should move together. As discussed in Appendix A.l, we were able to develop a one-parameter exponertial decay function that generates successive price relatives of the form:

```
\(P R_{i}=\) (Price of Vehicle Aged i/Price of Vehicle Aged i-1)
        for \(1=2, \ldots, 20\) )
```

In this way, given estimates of new car prices and the one-year price relative to new, surcessive prices by vintage can be generated. From these prices we estimate by iaentity the average price of oid cars. PUOLD, which enters the scrapsage equation (see Appendix Al for details; 'old' is defined as aged 8 years or more).

As an intemediate step we estimated a function for the volume of used car transactions, PURRVUA. Since only seven years data existed the weak statistical results were not surprising (see page A2-59). Nevertheless, we were able to relate PUPMNUA (relative to current stock) to the change in new registrations (increased new car sales should initially imply increased used car transations) and to the trend in new car sales (sustained high new car demand repiaces used car purchases).

The predicted values for PURMMUA were used to estimate the one
year old price relative equations. He wanted to insure that the pricerelative equations were not badly affected by the weak PURMVUn equation. This procedure prevents the price-relatives from being distorted by actual PURMVUA movements that we could not predict with the equation.

Our hypothesis with respect to the price-relative equations- is that a high level cf used car transactions relative $=0$ new car sales should (ceteris paribus) tend to pusin used car prices up in an equilibrating response. The positive signs were therefore expected, (page $A \bar{i} 59$), but the high statistical power is somewhat surprising in view of the poor quality of the PURMVUA equation.

A second influence could come from new car prices. Increasing new car prices would lower the price-relatives, unless sufficient new car purchasers were driven into the used car market to inciuce a larger percentage change in used car prices. We find that new car prices have a positive effect for subcompacts and compacts, but a negative irpact for the larger cars. This implies that buyers of larger cars are less sensitive to price increases than small-car buyers, a reasonable result. Finally, for compact and mid-size, there is a third effect: if the new car sales share increases, the user car price tends to rise. 2/

The final equation estimated relates the futomotive liews average wholesale price to our vintage-weighted average used car price, PUSEDR,

1/The price-relatives are in "odds" form so that predicted values must lie between 0 and 1 .

2/ Note that there is very little variation for mid-size. Hence the standard error is low despite the low \bar{R}^{2}.
which is computed by identity given prices by vintage. The close relationship is an encouraging result for our methodology.

A 2.4.6 INCOME DISTRIBUTION

Income distribution was found to have a strong and pervasive influence on the market for automobiles. In order to ensure that projections of the proportion of families with real incomes of $\$ 15,000$ or more were consistent with projections of income levels an equation relating the two was incorporated into the model coding (see page A2-63).

Severai different forms were estimated. The one finally adopted represents PERI5+ (in "oddss" form) as a simple function of current and lagged real disposable income per family unit. To some extent the predicted levels trend through some of the historical fluctuations in PERI5+, hence the modest Durbin-Watson statistic. However, the income elasticities are clearly appropriate in relative ordering, and this form yielded by far the most reasonable historical simulations.-

[^20]1. Desired Stock Per Family
desired stock aid share equations
$\ln ($ CPMTCAP/PC) $+0.421187 \ln ($ LD/FM $)-0.0536642 \ln$ (MTWNA/FM) +0.0990056 (NPMET/100)
$\bar{R}^{2}=0.461 \quad$ SEE $=0.0596$
$\ln ($ KEND $/$ FM $)=-1.90959+0.563344 \ln ($ RDIP4 $/$ FM $)-0.100994 \ln ($ PER15 $+/(100-$ PER15 $)$) $)-0.193527$
(.84)
(1.61)

(OUMNTN) +0.559391 (DUMPAC)
SEE $=0.1591$
Notes: All equations are estimated over 47 states excluding Oklahoma, Alaska, Hawaii, and

TABLE A 2-1 (Cont.)
2. Share of Subcompacts in Combined Subcompacts and Compact Share

IV. Mid-Size Share
$\ln \left(\frac{\text { SHRM }}{1-S H R M}\right)=0.211039-1.98095 \ln (C P: M / T-M)-.161133 \ln (\mathrm{YDI} / \mathrm{FM} / \mathrm{CT} * \mathrm{Q})+0.785861$
\ln (FM3+4/FM) +0.162809 (DUNEW) -0.125991 (DUMATN) $\bar{R}^{2}=\begin{aligned} & (4.01) \\ & 0.683\end{aligned} \quad$ SEE $=0.0779$
V. Full-Size Share
$\ln \left(\frac{\text { SHRF }}{1-\text { SHRF }}\right)=-1.84714-8.84702 \ln (C P M F / T-F)+0.831944 \ln (\mathrm{YDI} / \mathrm{FM} / \mathrm{CT} * Q)-0.506012$
Notes: All equations are estimated over 47 states excluding Oklahoma, Alaska, Hawaii, and
the District of Columbia. Variable definitions are presented on page A $2-28$, 29 . the District of Columbia. Variable definitions are presented on page $A \operatorname{2-28}, 29$
VI. Luxury Share
$\ln (\underset{1-\text { SHRL }}{\text { SHRL }})=-\underset{(2.26455}{-2.467677} \ln (\mathrm{CPML} / \mathrm{T}-\mathrm{L})+\underset{(2.12)}{0.209938} \mathrm{in}$ (PERI5+)$+\underset{(1.52)}{0.00183016}$ (NPMET) (9.26) 0.72$)$ (OUNHSC)

Clasticities for Desired Share Equations
$\bar{R}^{2}=0.519 \quad$ SEE $=7.1333$

A2-27

Symbol	Definitions
CPMF/T-F	Cost Per Mile for Full-Size Cars Over Desired Share keignted Cost Fer Mile for All O:ner Classes
CPM $/ T-1$	Cost Per Mile for Luxury Cars Over Desired Snare Weighted Cost Per Mile for All Other Classes
CPMM/T-M	Cost Per Mile for Mid-Size Cars Over Desired Snare keighted Ccs: Fer Mile for All Other Classes
CPMSC/T-SC	Cost Per Mile for Combined Subcompact and Compact Cars (keighted by Desired Shares) Over Desired Share Weighted Cost Per Mile for ill Other Classes
Co:S/C	Cost Per Mile for Subcompacts Over Cost Per Mile for Compacts
CPMTTCAP	Desired Share Weighted Cost Per Mile (Includes all Classes: Donestic and Foreign)
DUMriEh	Durmy for Mew England States (Equals 1.0 for Mountdin; 0.0 otherwise)
DUMMT N	Dummy for Mounta in States (Equals 1.0 for Mountdin: 0.0 otherwise)
CUMPAC	Iummy for Pacific States (Equals 1.0 for Pacific; 0.0 otherwise)
DUMHSC	Dummy for West South Central States (Equals 1.0 for West South Central; 0.0 otherwise)
FM	Number of Family Units (Equais number of families plus number of unrelated individuals)
FMij+4/FH	liumber of 3 and 4 Hemser Families Over Number of Family Units
FMS $5 /$ FM	Number of 5 or more Member Families Over Number of Family Units
KEHD/FM	Number of Cars In Operation at Year End Over Number of Family Units
LD/FM	Number of Licensed Orivers Over Number of Family Units
MTWHA/FM	NuTber of Dersons Not Using An Automobile To Travel To Work Over Number of Family Units

TABLE A 2-1 (Cont.)

Definitions
Percentage of Population Living in SMSA's
Number of Persons in Resident Population Between 20 and 29 Years 0ld Over Number of Family Units

Consumer Price Index, All Items (Hote: is Divided by 125.3 to convert
from $1967=100$ base to $1972=1.0$ base)
Percentage of Families (Excluding Unrelated Individuals)Earning \$15,000 or more ir 1970 dollars

Permanent Real Disposable Income: Weighted Average of Current and Lagged Disposable Income (4, 3, 2, 1 weights) Deflated by The Current Year Consumer Price Index
\$ Disposable Income Over Number of Family Units Over Fixed Weighted Cost Per Mile (Cost per mile for subcompacts and compacts, cost per nile for mid-size, cost per miles for full-size, and cost per mile for luxury where weights are desired share in U.S. Market for 1972)
\$ Disposable Income Over Number of Family Units Over Fixed Weighted Cost Per Mile for Subcompacts and Compacts (Weights are desired U.S. shares in 1972)

Desired Share of full-Size Cars

Desired Share of Luxury Cars Desired Share of Mid-Size Cars

Desired Conbined S'are of Compact and Subcompact Cars

YOI/FM/SC*O SHRF
SIIPL
SIHRM
SHRSC
SIIRS/SC
TABLE A 2-2
TOTAL NEW REGISIRATIONS AND SCRAPPAGE

1. Rew Registrations (OMVUANR)

2. Total Auto Scrappage (SCHVUA)

SCMVUA - SCINAGIV	3 KEND*AY
PMVUAYEND (-1) + OMVUATR	
	$+\underset{(5.32)}{2.91030 \ln (\text { AVAGE } 0-20)}-\underset{(2.20)}{.145089} \ln \left(\frac{\text { PUOLD }}{\text { PSCRAPAV }}\right)-\underset{(4.33)}{338149} \ln \text { (INRUT) }$
	$+\sum_{i=0}^{2} a_{i} \ln \left(\frac{V M T / K}{\mathrm{VMI} / \mathrm{K}(-1)}\right)_{-i}$
	$a_{0}=\underset{(2.42)}{2.23399,}, a_{1}=\underset{(3.60)}{4.19538,} \quad a_{2}=\underset{(2.86)}{3.45071}$
$\overline{\mathrm{R}}^{2}=.923$	S.E. $=.0462 \quad \mathrm{DW}=2.60$

Period of Fit: 1958-1974
Note: For definitions sce page A 2-31

Definitions:
AVAGE:I-20 - Average Age of Stock, Vintuges 0 through 20
DUMALTOS - Strike Dummy Variable
KEND*AY - Uesired Stock
HRUT - Unemployment Rate
OMVUAVIR - New Registrations
OPMVUAYEND - Year-End Stock of Cars in Operation
PSCRAPAV - Scrap-Metal Price
PUOLD - Average Price of 0ld Cars
PLTgixi - New Car Price, Average, Weighted by Pre:ious Year Sales
Putotian - Previous Year Average New Car Price, Sales Weighted
RDI/FM - Real Disposable Incone Per Family
RDIPG/FM - Permanent Family Income

TAELE A 2-3

SHARE OF^{-}NEW REGI STRATIONS EQUATIOHS

1. Combined Subcompact and Compas: New Recistrations Share (SHRSCTMR)
$\operatorname{in}\left(\frac{\text { SHRSCTNR }}{1-S H R S C T N R}\right)=\operatorname{ir}\left(\frac{S H R S C * A}{1-S H R S C * A}\right)+\underset{(3.97)}{0.0598815}$
$=-\frac{0.400553}{(16.61)}\left[\operatorname{in}\left(\frac{(\text { TMSCTK-SC })}{1-(T M S C T K-S C)}\right)-i n\left(\frac{S H R S C \star A}{1-S H R S C \star A}\right)\right]$
$\bar{R}^{2}=0.932 \quad$ SEE $=0.0483 \quad$ D.W. $=0.83$
Period Fit: 1954-1974
2. Subcompact Share in Combined Subcompact and

Compact New Reoistrations (SFiRS/SCTIRP)
$\operatorname{In}\left(\frac{S H R S / S C T M R}{1-S H R ' J / S C T N R}\right)=2 r \cdot\left(\frac{S H R S / S C * A}{1-S H R S / S C * A}\right)+\frac{0.00275211}{(0.27)}$

$$
\begin{aligned}
& -\frac{0.699549}{(21.41)}\left[\operatorname{in}\left(\frac{(T M S / S C T K-S C)}{1-(T P S / S C T K-S C T}\right)-\operatorname{lr}\left(\frac{S H R S / S C^{*} A}{1-S H R S / S C * h}\right)\right] \\
& \vec{R}^{2}=0.958 \quad \text { SEE }=0.0453 \\
& \begin{array}{ll}
\text { Period of Fit: } 1954-1974 & \text { D.W. }=1.39
\end{array}
\end{aligned}
$$

III. Mid.'ize Lar New Registration Share (SHRYDPR)

$$
\begin{aligned}
& \ln \left(T-\frac{\text { SHRMDNR }}{- \text { SHRMDNR }}\right)=\operatorname{in}\left(\frac{\text { SHRM*A }}{1-\text { SHFM }^{*} A}\right)-(0.00198516 \\
& \left.-\underset{(82.94)}{0.873077} \operatorname{in}\left(\frac{(T M M D K-S C)}{1-(T M M K D K-S C)}\right)-\operatorname{in}\left(\frac{S H R M^{*} A}{1-S H P M \star A}\right)\right] \\
& \bar{R}^{2}=0.997 \quad \text { SEE }=0.0101 \quad \text { D.W. }=1.26 \\
& \text { Period of Fit: 1954-1974 }
\end{aligned}
$$

Note: For definitions, see page \& 2-33
IV. Full-Size Car New Registrations Share (SHPFDVR): Constrained Form

$=\frac{0.826937}{(47.12)}\left[\operatorname{Lr}\left(\frac{(\text { TMFDK }-S E)}{1-(\text { MMFDK-SC) })}\right)-2 r .\left(\frac{\text { SHRF*A }}{1-\text { SHRF*A }}\right)\right]$

$$
\begin{aligned}
& R^{2}=0.991 \quad \text { SEE }=0.0168 \\
& \text { Period of Fit: } 1954-1974
\end{aligned} \quad \text { D.W. }=1.05
$$

V. Luxury Car New Registrations Share (SHRLTNR)

in $\left(\frac{\text { SHRLTNR }}{1-\text { SHRLTiVR }}\right)=\operatorname{in}\left(\frac{\text { SHRL*A }}{-\frac{S H R L * A}{*}}\right)+\frac{0.000264892}{(0.37)}$

Definitions:

SHRscNR $=$ Share of New Registrations, Class se, $s e=$ S/SCT, SCT, MD, FD, LT.

SHRes*A $=$ Desired Stock Share, Class sc.
TMsck-SC $=$ Share of Stock, Class se, after scrappage, shares adjusted to sum to one. Thus:

THeck-SC = SHRsek-SC/E SHRscK-SC
s
where
SHFscK-SC $=$ (OPMVUAccYEND(-1) - SCMVUAEs)/ (OFMVUAYEND(-1)-SCMVUA) $=$ Previous class stock less this year's class scrappage relative to total previous stock less total current scrappage.

TABLE \& $2-4$
desired domestic share by size class equationis I/

1. Domestic Share of Subcompacts
$\ln \left(\frac{\text { SHRSD }}{1-S H R S D}\right)$
$=\begin{array}{ll}31.2613 & -33.2971 \\ (5.77) & (6.00)\end{array}$ (CPMSD/SF)
10.0775879 (RETD/F)
$(2.87)$$\underset{(4.52)}{+0.00567794}$ (NDMET)
-0.343468 (DUNTTN) $\quad-0.302802$ (DUMPAC)
(4.29)
(2.67)
$\bar{R}^{2}=0.568$
$S E E=0.1779$
2. Domestic Share of Compacts
```
2r. \(\left(\frac{\text { SHRCD }}{1-\text { SHRCD }}\right)=\begin{array}{cc}36.4223 & -37.2060 \\ (4.47) & (4.01)\end{array}\) (CMPCD/CF)
    +0.0254892 (FATD/F) +0.00515098 (PPMET)
    (0.45) (1.25)
    -0.773341 (DUMHEh') \(\quad-0.745386\) (DUMATHi)
    (2.53) (4.07)
    -1.2856i (DUMPAC)
    (4.67)
    \(\bar{R}^{2}=0.728 \quad\) SEE \(=0.4140\)
```

I/ All eouations are esimated over 47 states exciuding Gklanoma, Alaska, Hanãi:. and the District of Columbia

TABLE A 2-4 (Cont.)
III. Comestic Share of Luxury Cars

$$
\begin{aligned}
& \text { 2) }\left(\frac{\text { SHRLD }}{1-S H R L D}\right)=\begin{array}{cc}
10.8575 & -8.99660 \text { (CPMLD/LF) } \\
(4.70) & (3.69)
\end{array} \\
& +0.109161 \text { (RETD/F) }-0.378342 \text { (DUMNEW) } \\
& \text { (2.57) (1.93) } \\
& -0.234846 \text { (DIMMTN) }-0.613182 \text { (DUMPAC) } \\
& \text { (1.74) (2.90) } \\
& \bar{R}^{2}=0.730 \quad S E E=0.31095
\end{aligned}
$$

IV. Elasticities fo: Domestic Share Equations

	SHRSD	SHRCD	SHRLD
1. Domestic Cost Per Mile to Foreign Cost Per Mile	-20.325	-1.266	-0.509
2. Ratio of Total to Foreisn Dealerships	0.146	0.003	0.020
3. Percent of Population in SMSA's	0.205	0.011	----
Definiticns:			
SHPSD $=$ Domestic Share of SHRCD $=$ Domestic Share of SHRLD $=$ Domestic Share of			

TABLE \& 2.5

DOMESTIC SHARE EQUATIONS

1. Subcompacts

2r. (SHRSNNR/1-SHRSDPRR) $=12.7018-12.4014$ 2r. (CPMSD/SF)
(2.16) (3.33)
+2.10092 in. (MODNTDSD/SF) +0.912208 NPMET
(13.88) (4.81355)
$+3.72615 \ln (N P 20.29 / F M)-28.3427$ 2n (NPRCOLL4+) (1.66) (6.71)
$\bar{R}^{2}=0.349 \quad$ SEE $=.380 \quad$ D.W. $=2.408$
Period: 1959-i974

Definiticns:
CPMSD/SF Cost Per Mile, Ratic. Subcompact Domestic to Foreign
MODWTDSD/SF Sales-Weignted Models Index, Retio, Subcompact Domestic to Foreign

IIPMET Percent of Population in SNSA's.
NP20.29/FM Number of Persons Aqed 20 to 29 Years Per Family
NPRCOLL4+ Percent of Population Over 25 With 4 or More Years of College
SHRSDN \quad Domestic Share of Subcompact New Registrations

TABLE A 2-5 (Cont.)

11. Compacts
$2 r .($ SHRCDNR $)=48.3103-7.79166 \mathrm{in}(C P M C D / C F)$ (3.8i) (3.41)
+1.01743 2r. (OLRSWTDCD/CF) -0.201210 NPMET (7.62) (2.33)

- 4.48652 in (NPRCOLL4+) +2.54281 ir. (NP20.29/FFi) (1.79)
+10.9695 识 (PRPAC/R) (2.38)
$\bar{R}^{2}=0.936 \quad$ SEE $=.172 \quad D^{\prime} \mathcal{N}=1.878$
Period: 1958-1974

Definitions: (See previous page)
CPMCD/CF Cost Per Mile, Ratio, Compact Domestic to Foreign
DLRSWTDCD/CF Sales-hegithed Deaiers Index, Ratiu. Compact Domestic to Foreign
PRPAC/R Percent of Population in Pacific Region
SHRCDNR Domestic Share of Compact New Registrations

TABLE A 2-5 (Cont.)

III: Luxury


```
        +0.855848 2n (DLRSWTDLD/LF) - 38.3084 in (NPRENC/R)
        (2.70)
                                (2.99)
                            + }\mp@subsup{\sum}{i=0}{3}\mp@subsup{a}{i}{}\mathrm{ i.r. ( (% (%NI
```



```
    K
    Period: 1958-1974
    Definitions: (See previous pages)
    DLRSWTDLD/LF Sales-Heighted Dealers Index, Ratio, Luxury
        Donestic to Foreign
    NPRENC/R Fraction of Popula&ion in East North Central Region
    RDI/FM Real Disposable Income Per Family
    SHRIDNR Domestic Share of Luxury New Registrations
```

TABLE A 2-6

VEHICLE MILES TRAVELED

```
In (VMT/FM) = irn (WTDMVINT/FM) + = (1.415327 - - 0.206013 in in (PRGAS/AVMPGVINT/PC)
    + 0.118999 2n (PER15+/100 - PER15+)
    (5.59)
    -0.467538 2n (RDIP4/FM)
        (3.42)
\mp@subsup{\overline{R}}{}{2}=0.852 SEE =.014 DW = 1.662
Definitions:
\begin{tabular}{|c|c|}
\hline AVMPGVINT & Vintage-Weighted Average Fleet Miles Per Gallon \\
\hline PER15+ & Percentage of Families with Real Incomes of \(\$ 15,000\) or More (1970§) \\
\hline PC & Consumer Price Indek, Total, \(1972=1.0\) \\
\hline PRGAS & Retail Gasoline Price Per Gallon Including Taxes \\
\hline RDIP4/FM & Permanent Income Per Fanily, Weighted (4, 3, 2, 1) Sum of Current and Lagged Real Disposatle Family Income \\
\hline VMT/FM & Vehicle Miles Traveled Per Family by Sar \\
\hline WTDMVINT/FM & Constant (1972) Mileage-Weighted Sum of V'ehicle Miles by Vintage \\
\hline
\end{tabular}
```

TARLE A 2-7
re-estimated city and highway mpg equations

1. City Driging MPG

-. 00145807 C.'m73
$(1.0+$ EFFC. $/ 100.0+E F F C$ ce $/ 100.0)$
where $s c=S D, S F, C D, C F, M D, F D, L D, L F$.
SEE $=0.0019$
2. Highway Driving MPG

$$
\begin{aligned}
& \text { Definitions: } \\
& \begin{array}{l}
=\text { City Driving MPG for cars of class } \varepsilon c \\
=\text { Highway Driving MPG for class of class } \varepsilon c \\
=\text { Curb Weight for cars of class } 6 c \\
=\text { Engine Displacenent for cars of class } \varepsilon c
\end{array} \\
& \begin{array}{l}
=\text { Engine Displacentent for cars of class } s c \\
=\text { Fraction of cars of class se with autnmat }
\end{array} \\
& =\text { Fraction of cars of class sc with overdrive units irstalled } \\
& \text { USceFAUTO = Fraction of cars of class se with autnmatic transmissions installed } \\
& \begin{array}{l}
\text { USecfAUTO } \\
\text { USecf0D }
\end{array} \\
& \text { USECF4CYL } \\
& \text { DUM }_{y y} \\
& \text { DUM }_{y y, z \pi} \\
& =\text { Number equals } 1 \text { from year yy to year zs, } 0 \text { otherwise } \\
& \text { USsemPGC } \\
& \text { USscMPGH } \\
& \text { USieCURB } \\
& \text { USecDisp } \\
& \text { Size classes } \varepsilon c=S D, S F, C D, C F, M D, F D, L D, L F \\
& \begin{aligned}
= & \text { Muitiplicative efficiency parameter (measured in \%) to be used in the forecast } \\
& \text { period analysis to introduce across the board increases in MPGC due to tech- }
\end{aligned} \\
& \text { nological improvements. } \\
& =\text { Fractions of cars of class sc with } 4 \text { cyclinder engines installed } \\
& =\text { Dummy equals } 1 \text { in year } y y, 0 \text { otherwise } \\
& \text { USecF4CYL } \\
& =\text { Same as EFFH but applies to specific size class ss (see EFFC }{ }_{\text {ss }} \text { for size class } \\
& \text { definitions) } \\
& \text { EFFC } \\
& =\text { Same as EFFC but applies to specific size class ss where } s s=\text { ST, CT, MD, FD, LT } \\
& \text { (Note: same improvement enforced for domestic and foreign members of a class) } \\
& \text { = Same purpuse as EFFC but for highway MPG }
\end{aligned}
$$

(Cont.)
 TABLE A 2-7

TABLE A 2-8

E.P.A. MILES PER GALLON EQUATIONS

Definitions: See End of Table

1. City

EPAscMPGC $=\underset{(1.23)}{1.35252}+\underset{(14.91)}{1.3276}$ USECMPGC $-\underset{(3.37)}{1.9589}(8 c=$ SF, CF, LF only $)$
$=0.782185$ (sc = FD only) (1.14)
$\bar{R}^{2}=0.872 \quad$ SEE $=1.504$
Estimated across 59 observations for 1975-7c
11. Highwar

$+3.14248(a c=C F, C D$ only $)$ (1.45)
$\vec{R}^{2}=0.876 \quad S E E=2.207$

III. Averages

EPATDMPGX $=1 / \sum_{s c=1}^{5} \quad \frac{N_{S C}}{N_{T D}} /$ EPASCMPGX
For $\varepsilon c=5 D, C D, M D, F D, L D ; x=C, H$.

EPATCMPG $=1 /[($ VMTU/VMT $) / E P A T D M P G C+(1-$ IMTU/VMT $) / E P A T D M P G H]$
(The same expressions hold for EPATFMPGy, EPATFMPG)

1II. Averages, Cont.

Definitions:
EPAscMPGC City Per Gallon, Class sc, E.P.A. Estimate
EPAscMPGH Highway Miles Per Gallon, Class ec, E.P.A. Estimate
MSscMPGC City Miles Pel Gallon, Class sc, Consumer ReportsW.E.F.A. Estimate

USecMPGH Highway Miles Per Gailon, Class ec, Consumer ReportsH.E.F.A. Estimate
$\mathrm{N}_{\mathrm{Ec}} \quad$ New Registrations, Class sc.
es $\quad=T D=$ Total Domestic
se $\quad=T F=$ Total Foreign
sc $\quad=T T=$ Total All Classes
EPATDMPG-FW Fixed-Weighted EPA Average MPG
VMTU Vehicle Miles Travelled, Urban
Vit Venicle Hiles Travelled

TABLE A 2-9
NEW CAR PRICE EQUATIONJ
DOMESTIC: (Definitions: see end of table)

1. Average Domestic Base Purchase Price, Excluding Dotions, All Classes

In: (USTDPUBASEFW) $=3.58927+0.978764 \ln$ (PINPUTA)
(13.3650) (16.2937)
+0.0152688 DUM5E.63 $+0.425313 \Delta 2 r$ (PINPUTA)
(4.74923) (1.90291)

```
R}\mp@subsup{\overline{R}}{}{2}=0.96
SEE = 0.015174 1958-1974
```

II. Average Domestic Price for All Options, All Classes
\ln (USTDPOPTMFW) $=\begin{aligned} & 3.53466 \\ & (13.1164)\end{aligned}+\begin{aligned} & 0.757187 \ln \\ & (12.7053)\end{aligned}$
+0.132509 DUM 58.59 (9.14247)

$$
\bar{R}^{2}=0.919 \quad S E E=0.017197 \quad 1958-1974
$$

1II. Domestic Base Purchase Price. Excluding Options, by Class
Subcompacts:
USSDPUBASE-2 $=\left(B_{S} / S U M 1\right)$ USTDPUBASEFW
Compacts:
USCDPUBASE-2 $=\left(B P_{C} / S U M 1\right)$ USTDPUBASEFW
Midsize:
USMDPUBASE-2 $=\left(\mathrm{BP}_{\mathrm{M}} /\right.$ SUM1 $)$ USTDPUBASEFW
Fullsize:
USFDPUBASE-2 $=\left(B P_{F} / S U M I\right)$ USTDPUBASEFW
Luxury:
USLDPUBASE-2 $=\left(B P_{L} / S U M 1\right)$ USTDPUBASEFW

SUMI $=.092 B P_{S}+.182 B P_{C}+.236 B P_{M}+.386 B F_{F}+.104 B P_{L}$

```
IV. Domestic Price for All Options, by Class
Subcompacts:
Compacts:
    USCDPOPTM = (OPC/SUM2) USTDPOPTNFW
Midsize:
    USMDPOPTM = (OFM/SUM2) USTDPOPTMFW
Fullsize:
    USFDPOPTM = (OP F}/\mathrm{ SUM2 ) USTDPOPTMFW
Luxury:
    USLDPOPTM = (OP L/SUM2) USTDPOPTMFW
    SUM2 = .0920P 
FOREIGN:
```

Foreign Base Purchase Price, Excluding Options, By Class
Subcompacts:
In (USSFPUBASE-2) $=4.47528+0.6948362 n($ IMPCOST $)$
(21.0455) (15.347)
-0.0596612 DUM58.65
(3.20585)
$\bar{R}^{2}=0.969 \quad$ SEE $=0.02983 \quad 195 \varepsilon-1974$

TABLE A 2-9 (Cont.)

Foreign Base Purchase Price, Excluding Ootions, By Class, Continued

```
Compacts:
In (USCFPUBASE-2) = 4.04827 +0.870526 2r. (IMPCOST)
                                (21.2241) (21.4359)
                            -0.100992 DUM58.65 -0.0597245 DUMM6]
                                (5.92270) (2.08793)
    \mp@subsup{R}{}{2}=0.986 SEE = 0.026756 1958-1974
Luxury:
In (USLFPURASE-2) = 3.77860 +1.05045 in (IMPCOST)
                        (14.4073) (18.3237)
-}\mp@subsup{\overline{R}}{}{2}=0.95
    SEE = 0.048495 1958-1974
```

VARIASIE DEFINITIONS, NEW CAR PRICES

USSDPI'BASE-2	Subcompact Domestic Base Price
USCDPUBASE-2	Compast Domestic Base Price
USMDPUBASE-2	Midsize Domestic Base Price
USEDPUBASE-2	Fullsize Domestic Base Price
USLDPUBASE-2	Luxury Domestic Base Price
USTDPUBASEFW	Fixed-Weight Average Domestic Base Price
USSDPOPTM	Subcompact Domestic Price of Maximum Installed Options
USCDPOPTM	Compact Domestic Price of Maximum Installed Options
USMDPOPTM	Midsize Domestic Price of Maximum Installed Options
USFDPOPTM	Fuilsize Domestic Frice of Maximum Installed Options
USIDPOPTM	Luxury Domestic Price of Maximum Installed Options
USTDPOPTIAFW	Fixed-Height Average Proce of Maximum Installed Op:ions
USSFPUBFSE-2	Subcompact Foreign Base Price
USCFPUBASE-2	Compact Foreign Base Price
USLFPUBASE-2	Luxury Foreign Base Price
PINPUTA	Fixed-Weight Index of Input Costs, Autos
IMPCOST	Weighted Average of Foreign Car Export Price Index
DUM58-63	$\begin{aligned} & =4.0,1958 ;-3.0,1962 ;-2,1963 . \\ & =0.0 \text { other years } \end{aligned}$
DuM58.59	$\begin{aligned} & =1.0,1958-59 . \\ & =0.0 \text { other years } \end{aligned}$
DUM58.65	$\begin{aligned} & =1.0,1058-65 . \\ & =0.0 \text { other years } \end{aligned}$

TABLE A 2-9 (Cont.)
$\mathrm{BP}_{S} \quad$ Base Purchase Price Ratio, Subcompacts/Fixed-Weight fiverage
BPC Base Purchase Price Ratio, Compacts/Fixed-Weight Average
$B P_{M} \quad$ Base Purchase Price Ratio, Mid-Size/Fixed-Weight Average
$\mathrm{BP}_{\mathrm{F}} \quad$ Base Purchase Price Ratio, Fullsize/Fixed-Weight Average
OPS Maximum Installed Options Price Ratio, Subcompacts/Fixed-Weight Average
OP Maximum Installed Options Price Ratio, Compacts/Fixed-Height dverage
OPM Maximum Installed Options Price Ratio, Midsize/Fixed-Weight Average
OP $\mathrm{F}_{\mathrm{F}} \quad$ Maximum Installed Options Price Ratio, Fullsize/Fixed-Weight Average
$O P_{L} \quad$ Maximum Installed Options Price Ratio, Luxury/Fixed-height Average

TABLE A 2-10
EXPENIITURES FOR OPTIONS INSTALLED

1. Subcompacts

2r. (ODDSDOPT) $=27.4189-4.63344 \mathrm{in}$ (USTDPOPTHFW/PC) (7.14) (7.39)

- 0.853868 Ir (PER.15+) + 0.335403 DJP558 (2.32)
+0.288755 DUN59.61 $+2.92711 \ln$ (RDIP4/FM)
(3.42) (2.4C)
$\bar{R}^{2}=0.950$
S.E.E. $=0.0823$
D.W. $=2.210$

Period: 1958-1974

ODDSDDPT $=\left(\frac{\text { USSDPUOPT-2/USSDP(IPTM }}{1.0-(\text { USSDPUOPT }-2 / \text { USSDPOPTM })}\right)$

Elasticities:

USTDPOPTMFW/PC	-3.94
RDIP4/FM	2.99
FERI5 +	-0.73

Note: For definitions, see page A 2-5.5.

TABLE A 2-10 (Cont.)

II. Compacts

$\ddot{R}^{2}=0.970 \quad$ S.E.E. $=0.1014 \quad$ D.W. $=1.219$
Period: 1958-1974
ODDCDOPT $=\left(\frac{\text { USCD }}{1.0-(U U O T-2 / U S C D F O P T I ~}\right)$

Eissticities:

USTCPOPTNFW/FC -3.63
RDIP4/FM 1.37

Note: For definitions, see page A 2-55.

```
TABLE A 2-10 (Cont.)
```


III. inidi-Size

```
    In (ODDMDOPT) = 38.5568-5.96986 In (USTDPOPTMFW/PC)
                        (6.84) (10.14)
                    + 0.715813 DUM53 + 0.802432 DUM59
                        (3.54) (4.06)
                        + 1.68008 2n (RDIP4/FM)
                        (1.98)
    R
                                S.E.E. = 0.1036
                                D.W. = 1.035
    Period: 1958-1974
    UDDMDOPT }=(\frac{\mathrm{ USMDPUOPT-2/USMOPOPTM}}{1.0-(USMDPUOPT-2/USMDPOPTH)}
```


Elasticities:

```
USTDPOPTMFM/RC -3.73
RDIP4/FM 1.05
```

Note: For definitions, see rage A $2-55$.

TABLE 2-10 (Cont.)

```
IV. Full-size
    In (ODDFDOPT) = 37.6517 - 5.86341 㕶 (USTOPOPTMFW/PC)
    + (4.34) (.0364) DUM58 + 
    + 2,00039 笽(ROIP4/FM)
        i2.00)
    R'2 = 0.930 S.E.E. 0.1933 D.W. = 0.911
    Period: 1958-1974
    ODDFDOPT =( (USFDPUOPT-2/USFDPOPTM 
```

Elasticities:
USTOPOPTMFW/PC -2.69
RDIP4/FM 0.92
Note: For definitions, see page A 2-55.

TABLE A 2-10 (Cont.)

v. Luxury

```
    In (ODDLDOPT) =
                            + 0.443425 DJ$55 + 0.45603i DU:459
                                (3.44) (3.62)
            + 2.17749 2n (RDIP4/FM)
                        (4.03)
    \mp@subsup{\overline{R}}{}{2}=0.977 S.E.E. = 0.10437 D.W. = 1.135
    ODDLDOPT = (USLDPUOPT-2/USLDPOPTHY
```


Elasticities:

```
USTDPOPTMFW/PC -1.22
RDIP4/FM 0.55
```

Note: For definitions, see page A 2-55.

Definitions:

```
USscPUOPT-2 Cost of Options Purchases, Class se,
    sc = SD, CD, MD, FD, LD
USscPOPTM Maximum Cost of Options, Class se
PC Consumer Price Index, All Items, 1972=1.0
RDIP4/FM Real Disposable Income Per Famìly Unit
PER15+ Percentage of Families with Real Incomes of $15,000 or more
USTDPOPTMFW Fixed-Weighted Average Maximum Cost of Options
DUM58 }\quad=1.0,198
DUM59 = 1.0, i959
    = 0.0, Otherwise
DUM59.61 = 1.0, 1959-61
    = 0.\hat{,}\mathrm{ Otherwise}
```

TABLE A 2-11
TRANSPORTATION CHARGES BY CLASS
(Defiritions: see end of Table)

1. Subcompacts

-0.0578934 DUM65.67-0.104719 DUM58
(3.42713) (3.82865)

$$
\bar{R}^{2}=0.959 \quad S E E=0.035960 \quad 1958-1974
$$

11. Compacts
```
In (USCFPUTRN)}=-3.7163
    (16.9167)
In (USCDPUTRNV = - -3.67384 (16.7230) ) + (1.81.14 2n (36., \3) (PXRGT)
-0.0139986 DUME5.67 -0.0776173 DUM58
    (2.60438) (2.83753)
        \mp@subsup{\overline{र}}{}{2}=0.980 SEE=0.035963 1958-1974
```

III. Mid-Size
In (USMUPUTRN) $=-2.70790+1.61989$ 2:2 (PXRGT)
(9.31492) (24.7648)
-0.104544 DUM5S -0.0794565 DUM64.67
(2.93481) (3.94944)
$\bar{R}^{2}=0.982 \quad S E E=0.032823 \quad$ 1958-1974
A2-56
IV. Full-Size

```
In (USFDPUTRN) = -2.96414 + 1.71061 In (FXRGT)
                        (8.39677) (21.6823)
40.0912733 DUM58.60 -0.072.7857 DUM64.67
    (3.35893) (3.13423)
    \mp@subsup{R}{}{2}=0.978 SEE = 0.034977 1958-1974
```

V. Luxury

-0.0273104 DUM65.67 + 0.0656844 DUM59.6?
(2.03501) (4.62970)

$$
\bar{R}^{2}=0.969 \quad S E E=0.027302 \quad 1958-1974
$$

VARIABLE DEFINITIONS, TRANSPORTATION CHARGES

USSDPUTRN	Subcompact, Domestic, Transportation Charges
USCDPUTRN	Compacts, Domestic, Transportation Charges
USMDPUTRN	Midsize, Domestic, Transportation Charges
USFDPUTRN	Fullsize, Domestic, Transportation Charges
USLDPUTRN	Luxury, Domestic, Transportation Charges
USSFPUTRN	Subcompacts, Foreign, Transportation Charges
USCFPUTRN	Compacts, Foreign, Transportation Charges
USLFPUTRN	Luxury, Foreign, Transportation Charges
PXRGT	Price Index of Transportation Sector, 1972-100.
DUM58	$\begin{aligned} & =1.0,1958 \\ & =0.0, \text { other years } \end{aligned}$
DUM58.60	$\begin{aligned} & =1.0,1958-60 \\ & =0.0, \text { other years } \end{aligned}$
DUM59.61	$\begin{aligned} & =1.0,1959-61 \\ & =0.0, \text { other years } \end{aligned}$
DUM64.67	$\begin{aligned} & =1.0,1964.67 \\ & =0.0, \text { other years } \end{aligned}$
DUM65.67	$\begin{aligned} & =1.0,1965-67 \\ & =0.0, \text { other years } \end{aligned}$

```
TABLE A 2-12
USED CAR MARKET EQUATIONS
```

I. Number of Used Cars furchased (PURNVUUA)

$$
\begin{aligned}
& \operatorname{In}\left(\frac{\text { PURNNUUA }}{\text { OPMNUAYEND }}\right)=\underset{(55.02)}{-1.82062}+\underset{(1.97)}{0.434827} \quad \text { } \operatorname{In} \text { (OMNUANR) } \\
& \frac{-0.553048}{(1.54)} \text { in }\left(\frac{\operatorname{OMVUANR}+\operatorname{OMVUANR}(-1)}{\operatorname{OMVUANR}(-2)+\operatorname{OMVUANR}(-3)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \bar{R}^{2}=0.382 \\
& \text { Period of Fit: } \quad \text { 1968-1974 }
\end{aligned} \quad \text { SEE }=0.0723 \quad D W=2.89
$$

II. Average Wholesale Price for Used Cars (PUSEDW)

$$
\begin{aligned}
& \text { in } \begin{aligned}
&(\text { PUSEDW })=-\underset{(0.05)}{-0.0180144}+\underset{(18.34)}{1.04679} \text { in } \text { (PUSEDR) } \\
& \bar{R}^{2}=0.960 \\
& \text { Period of Fit: } \quad 1960-1974
\end{aligned} \text { SEE }=0.0368 \quad \text { DW }=1.52
\end{aligned}
$$

III. Price of a One Year 01d Subcompact Relative To A New Subcompact (PU/RST)

$\underset{(2.09)}{-0.246608}$ DUM69.74 $+\underset{(4.91)}{1.62353} \operatorname{Ir}\left(\frac{\text { PURMVUA }}{\text { OMVUANR }}\right)$
$+\underset{(2.22)}{2.38565}[\operatorname{Lin}$ (PNEWST) $] * D J M 69.74$
$-\bar{R}^{2}=0.800$
Perind of Fit: $\quad 1958-1974 \quad$ SEE $=0.1515 \quad D W=1.97$

For definitions, see end of tabiミ.
IV. Price of a One Year 01d Compact Relá:ive To A New Compact (rU/NCT) $\ln \left(\frac{\text { PU/NCT }}{1-P U / N C T}\right)=\begin{array}{cc}0.386129 & -0.462438 \text { DUM } 67.68 \\ (3.89) & (4.39)\end{array}$
$+\begin{gathered}(3.00) \\ +0.92889 \\ \ln \left(-\frac{\text { PURMVUA }}{\text { OMVUANR }}\right) \\ +3.51931 \quad \Delta \ln \text { (PNEWCT) } \\ (4.11)\end{gathered}$
$\left.+\begin{array}{l}(2.63)\end{array}\right)$
$\bar{R}^{2}=0.783 \quad$ SEE $=0.1361 \quad D W=2.08$
Period of Fit: 1958-1974
V. Price of a One Year Mid-Size Relative To A New Mid-Size (PU/RMD)

$\operatorname{in}\left(\frac{\text { PU/MMD }}{1-P U / N H D}\right)=$| 0.559941 | -0.212865 DUW51 | -0.176421 |
| :--- | :--- | :--- |
| (8.41) | (2.04) | (1.57) |

$+\begin{aligned} & +0.336964 \\ & (1.64)\end{aligned} \ln \left(\frac{\text { PURMVUA }}{\text { OMVUANR }}\right) \underset{(1.66)}{-1.23833} \operatorname{\Delta In}$ (PNEINMD)
$+\begin{gathered}(2.31)\end{gathered}$ iri $_{(23311}\left(\frac{\operatorname{SHRMDNR}}{\operatorname{SHRMDNR}(-1)}\right)$
$\bar{R}^{2}=0.309 \quad$ SEE $=0.0984 \quad D W=2.14$
Period of Fit: 1958-1974

For definitions, see end of table.

TABLE A 2-12 (Cont.)

VI. Price of a One Year Full-Size Relative To A New Full-size (PU/NFD) $\operatorname{Ir}\binom{\mathrm{PU} / \mathrm{NFD}}{\mathrm{T}-\mathrm{PU} / \mathrm{NFD}}=\begin{array}{ccc}0.156425 & -0.303990 \text { DLM } 59 & +0.370710 \text { DUM64 } \\ (1.89) & (2.84) & (4.16)\end{array}$

-3.41949 Δ Ir (PNELFD)
(4.73)

```
-2}=0.802 SEE=0.0813 DW = 2.14
Period of Fit: 1958-1974
```

VII. Price of a One Year 01d Luxury Car Relative To A New Luxury Car (PU/NLT) $\ln \left(\frac{\mathrm{PU} / \mathrm{NLT}}{\mathrm{I}-\mathrm{PU} / \mathrm{INLT}}\right)+\begin{array}{ccc}0.655544 & -9.204294 \mathrm{DUM67} & +0.212233 \mathrm{DUM} 72 \\ (13.85) & (2.98) & (3.05)\end{array}$

$$
\bar{R}^{2}=0.786 \quad \text { SEE }=0.0663 \quad D W=2.24
$$

Period of Fit: 1957-1974

For definitions, see end of table.
VIII. Elasticities for One Year 01d Price Relative Equations:

Size Class (sc)	$\text { (PURMVUA })$	$\left(\frac{\text { PNEWSc }}{\text { PNEWSc }}\right)$	$\left(\frac{\text { SHR }}{\left(\frac{S H R N R}{}\right.}\right)_{-1}$
ST	0.33	0.48	---
CT	0.29	1.10	0.11
MD	0.12	-0.44	0.19
FD	0.48	-1.26	---
LT	0.21	-0.63	---

vefinitions:
OMVUANR $=$ Number of New Registrations
OPMVUAYEND $=$ Year-End Stock of Cars in Operation
PNEWsc $=$ New Car Purchase Price for Class se
$\mathrm{PU} /$ Nsc $=$ Ratio of One Year 01d Price to New Price, Class $s c, \delta \varepsilon=S T, C T, M D, F D, L T$

PURMVUA $=$ Number of Used Cars Purchased
PUSEDR $=$ Age and Class-Weighted Average Used
PUSEDW = Automotive News Average Wholesale Used Car Price
SHRscNR = Share of New Registrations in for Class $s c$
TABLE A2-13

income distribution equation

$+\underset{(2.89)}{0.960663} \ln ($ RDI $/$ FM $)(-3)+0.563511 \ln (R D I / F M)(-4)$
D.W. C. 749
(Second-degree Almon Lag, constrained to zero at far end)
PER15+ = Percentage of Family Units with Real Disposable Incomes of $\$ 15,000$ or more
ROI/FM $=$ Real Disposable Income Per Family Unit

A2-63/A2-64

APPEENDIX A 3 EXOGENOUS ASSUMPTIONS

A 3.1 IHTRODUCTION

This appendix contains all the exogenous inputs data used for the baseline forecasts, together with a brief indication of sources and methods used in their preparation. The data are presented in tables at the end of the appendix.

A 3.2 SOURCES AND METHODS

A 3.2.1 DEMOGRAPHIC INPUTS

Projections of the total resident population of the United States for all ages (NPR) and for selected age groups (NPR20.29, NPR16.74; were taken directly from U.S. Qureau of the Census, Current Population Reports, Series, F-25, No. 601, "Projections of the Population of the United States: 1975 to 2050", October 1975. This publication presents three series of projections which start with the estimated July 1, 1974 population and assume a slight reduction in future mortality and an annual net irmigration of 400,000 per yedr. They differ only in their assumptions about future fertility. For purposes of this study, Series III was selected, which assumes an ultimate level of completed cohort fertility (average iumber of lifetime births per woman) of 1.7.

Since the population projections include Armed Forces overseas, a constant is subtracted for all years to obtain a projection of residential population. Estimates of Armed Forces overseas by age group for

July 1, 1974 are given in Table K of the CPR. For series NPR and NPR16.74, the constant subtracted was 519,000 and for NPR20.29, the adjustment was 318,000 .

The NPR20.29 series is a direct exogenous input to the model. The NPR16.74 estimates were used to project the total labor force beyond 1985 (see following section), and to project the number of licensed drivers, LDMV. The relationship employed was estimated:

$$
\begin{aligned}
& \text { In }\left(\frac{\text { LDMV }}{\text { NPR16.74 }} /\left(1.0-\frac{\text { LDMV }}{\text { NPR16.74 }}\right)\right)=-\frac{2.43303}{(-31.2)}+\begin{array}{l}
0.0580339 \text { TIME } \\
(46.4)
\end{array} \\
& \bar{R}^{2}=0.989 \\
& \text { Period: } 1950-1974(\text { TIME }=50 \text { in 1950) }
\end{aligned} \quad \begin{aligned}
& \text { D.W. }=0.509
\end{aligned}
$$

The NPR estimates were used as a consistency check, and also to preject the numbers of families (NCF) and unrelated individuals (NPRU) for 1991-2000.

The projections of the number of families and unrelated individuals (and of average family size) are based on U.S. Bureau of the Census, Current Population Reporis, Series P-25, No. 607, "Projection of the Number of Households and Families: 1975-1900," August 1975. This publication presents three series of household and family projections, and the lowest series, C, was selected for forecast purposes. A constant adjustment factor of $3,000,000$ persons in each year was added to the total of secondary individuals, since the number of secondary individuals under the age of 14 is not included in the Census Bureau Projections.

Average size cf family (NCFMAVG) is based on the III-C projertions,
which combine the Series C projections of number of families and the series III populatior projections. The tota? •")ulation and family population proiections are consistent in covest. They differ in coverage, since the one refe's to resident population and NC.F and NPRU are based on population projections which exclude nembers of the Armed Forces living in the United States in military barracks.

For NPRU estimates, 1991-2000, we continued the s?ow upward trend in the ratio NPRU/NPR, which the Census data indicate is rising at a declining rate. From a 1975 ratio cf 0.0898 the Census projects an inerease to 0.1025 by 1990, which we extended to 0.1045 in 1995 and 0.1055 by 2000 .

For NCF, 1991-2000, the slow downward trend in NCFMAVG was similarly extended, from 3.39 in 1975 and 2.97 in 1990 to 2.91 in 1995 and 2.87 by 2000 . Then we used the identity:
$N C F=(N P R-N P R U) /\left(\frac{3.45}{3.39} *\right.$ NCFMAVG $)$ - where the $3.45 / 3.39$ factor adjusts for the statistical discrepancy present in the census data.

The family size inputs (FM5+/FM, FM3+4/FM) are projected or the basis of NCFMAVG. First we derived the proportion of families with 3 or more nembers ($3+$) from the estimated relationship:

Then we derived the prsortion of families with 5 or more members relative to N3+:

$$
\begin{aligned}
\ln \left(\frac{N 5+}{N 3+}\left(1.0-\frac{N 5+}{N 3+}\right)\right)=- & 5.05061+3.55659 \operatorname{in}(\text { NCTMAVa) }) \\
& (6.71)(6.13) \\
- & 3.57923 \triangle \ln (\text { NCFMAVG }) \\
& (1.84)
\end{aligned}
$$

$\bar{R}^{2}=0.788$
S.E.E. $=0.0343$
D.H. $=1.122$
Period: 1960-74

From the first relationship we obtain estimates of Fri $3+/$ NCF , and the second and the first together yield FM5 +/NCF. Fultiplying through by NCF/NCF+NPRU yield's FM5+/FM and FM3+/FM, and subtraction of the former from the latter yields FM3+4/FM.

The percentage of the population living in metropolitan areas in the United States inereased from 55.9 percent in 1950 to 62.7 percent in 1960, 68.4 percent in 1970, and 73.3 percent in 1974 . The projections of NPMET assume trat the combined effect of the creation of new SMSA's and migration out of SMSA's will result in approximstely eighty percent of the population residing in metropolitan areas in 1990. A semi-log function was fîted:

$$
\text { NPMET }=73.310+2.343629 \operatorname{Ln}(\text { YEAR })
$$

where YEAR $=0$ in 1973, the constant $=$ NPMET (1974), and the slope $=$ (NPMET (1990) - NPMET (1974)) / Ln (Period) or (79.95-73.310) / Ln (17). A projected value of NPMET was then calculated for each year. Since the estirated NPMET showed virtually no change after 1990, it was left at 80%.

Four regicnal variables for population are projected: NPRNEW/R, NPRN'SC/R, NPRMTN/R, and MPRPAC/R. The latest available regional projections are those published in Current Population Reports, Series P-25, No. 477 (March 1972), which give estimates for 1975, 1980, 1985, and 1990. Th.e absolute numbers are based on population projections in CPR, P-25, No. 470, November 1971. These projections are now obsolete in the light of ner projections in the October 1975 study. For this reason only proportions, by region, to total population were computed. The regional projections used were based on the E population series, which assumes an ultimate fertility rate of 2.11, and the Series 1 mi gration rate, which assumes continuation of 1960-1970 gross migration trends to 1990. At the time this study was completed, the 1970 census material had not been fully analyzed.

CPR P-20, No. 292, March 1976 "Population Profile of the United States: 1975" was used tu establish the regional proportions for April 1, 1970 (Census), July 1, 1974 and July 1, 1975 (preliminary). It was apparent that the Series I-E projections for 1975 were already outdated when compared with the recent July 1,1975 survey. The following procedures was therefore adopted.

The change in proportions 1975-1980 of the Series I-E projections was applied to the July $i, 1975$ estimatad proportions to give a revised projection for 1980, based on 1975 actuals. The change in proportions 1980-1985 was then applied to the revised 1980 numbers to estimate 1985. Finally, the change in proportions 1985-1990 of the Series I-E projections kas then applied to the revised 1985 series to obtain 1990 estimates. In sim, the estimated shifts between regions $1975-1990$ in the Series $1-E$
projections were ipplied to actual (but preliminary) figures for rogional proportions on July 1, 1975, rather than to the 1975 proportions originally projected. Projected proportions for the intermediate years were obtained by interpolation.

Three variables required projection for the travel to work variable, MTWNA. The growth rate of public transit passengers relative to employment (GRPUT/NER) is continued at its 1975 value. The growth-rate in transit passengers relative to passeingers traveling to work by transit is assumed to continue the slow decline projected for 1971-75. Finally, non-auto, non-transit travel to work relative to employment is also assumed to continue to fali at the 1971-75 rate.]/

A 3.2.2. ECONOMIC INPUTS

The general economic forecasts have been discussed previously. Here we concentrate on the projections for the variables not explicitly foreast by the tharton Annuel Long-Tem Econometric Model.

Personal income, taxes, transfers, employment and the unemployment rate are all taken directly from the forecast through 1985. After 1985 real growth was assumed to persist at $3_{\infty}^{c} p . a$. General inflation was assumed to run at 3.5% p.a. through 1990 , ther fail to 3.0%. The levels of employment and unemployment were projested coisistent with the labor force projection, which assumes a slowdown in purticipation growth, the labor force being 67% of NPR 16.77 for 1990 onwards.

The maximum passbook savings rate (the discount rate) is a straightforward assumption, while the installment credit rate is estimated from

[^21]the equation presented in Appendix A2, which links it to Moody's Bond Rate (FRMCS) - this is projected to fall to 6.1% for 1986-91, and 6.0% therenfter.

The overall consumer price index (PC) was linked to ihe overall consumer expenditures prica deflator (PDCE), thie estimated relationship being:

```
\(\operatorname{In}(P C)=-\frac{0.0794606}{(2.13)}+\frac{1.0664}{(127.7)} \ln (\) PDCE \()\)
```

```
R-2}=0.99
S.E.E. = 0.0057
D.W. = 0.88
Period: 1960-75
```

The index for repair and maintenance (PCAR) was similarly linked to the same deflator:


```
\mp@subsup{R}{}{2}}=0.99
S.E.E. = 0.0!73
i.W. = 0.707
Period: 1960-75
```

The index for parking (PCAP) was linked to the consumer expenditures on transpertation services deflator (PDCEST):

```
\(\operatorname{in}(\) PCAP \()=-0.388362+1.16917\) in (PDCEST) \(-0.462602 \Delta\) ir (PDCEST)
    (3.37) (43.0) (2.65)
\(\bar{R}^{2}=0.095\)
S.E.E. \(=0.0169\)
D.W. \(=1.533\)
Period: 1960-75
```

Also linked to the same deflator is the index for insurance (PCAI), with dumay variables introduced to account for the introduction of "no fault" insurance:

$$
+\begin{aligned}
& \left.\underset{(5.97)}{0.258431} \text { DUMINS }-\underset{(1.23)}{0.0631625 \text { DUMIHS7? }-} \begin{array}{l}
(1.71)
\end{array}\right) .0942298 \text { DUMINS73 }
\end{aligned}
$$

S.E.E. $=0.0387$
D.W. $=0.932$
$\bar{R}^{2}=0.983$
Period: 1956-75

The consumer price index for motor oil (PCMO) is iinked to PDCE:
2r. $($ PCMO $)=-\frac{0.185291}{(1.51)}+\frac{7.08512}{(39.5)} \operatorname{In}($ PDCE $)$
$\begin{array}{lll}\bar{R}^{2}=0.990 & \text { S.E.E. }=0.0188 & \text { D. W. }=1.141 \\ \text { Period: } 1960-75 & \end{array}$
The consumer price index of tires and tubes has shown very slow upward movement over the past twenty-five years. Indeed, even in 1973, the tires and tube CPI declined by 4.6 percent, while the overall CPI rose by 6.2 percent. The increast between 1973 and 1974 was a relatively madest 7.1 percent, in view of the inflaticn in ottier industrial products. It has been assumisd that prices in the period 1976-1979 will rise moderately as à effect of the recent wage settlement in the rubber industry. After that, retail tire prices should rise by 3.0 3.5 percent a year to the end of the forecast period.

The overall weighted-average purchase tax-rate (TXRiTDAUTO) has been assumed to continue to increase at its $1971-75$ rate of growth of 1.84\% p.a. All other tax-rates incorporated here, and the automobile strike dumny, are of course set to zero for the baseline.

The domestic input price index is solved for given the solutions for each input price index (32 distinct indices), obtained from the Wharton Annual Long-ierm Model, and the fixed input-output coefficient weights.

The foreign auto export price index was projectec at 9_{κ}^{*} and 4_{π}^{*} rates of growth for 1976-77 on the basis of Automotive News data and analysis. In line with current expectations concerning world trade in-
flation, we felt that foreign producers would probably be faced with somewhat higher rates of inflation than the domestic industry. Therefore, 7% inflation was assumed for 1978-79, 6\% for 1980, 4.5\% for 198190 , and 4% thereafter.

The transportation services output price index is obtained directly from the Annual Model, and is then extended for 1986 onwards at an assumed rate of 2.5%. The steel scrap price is orojected purely by assumption.

Finally, the retail price of gesoline is projected after distinguishing its two components: the pre-tax price and taxes. Since the taxes have not been on an ad valorem basis we have projested taxes as an addition, not a rate, using the long-term tistorical rate of increase of 2.5%. For the base price (PRGAS-TM), the projection is linked to the deflator for personal consumption expenditures on gasoline and oil (PDCENG), using the estimated equation:

In $($ PRGAS $-T X)=-\underset{(26.3)}{\underset{(26)}{72127}+\underset{(20.8)}{1.29065} \text { in (PDCENG) }}$
$-0.564958 \triangle \operatorname{In}$ (PDCENG) +0.145454 OUM74 (2.71) (3.12)

$$
\bar{R}^{2}=0.995 \quad \text { S.E.E. }=0.0131 \quad \text { D.W. }=2.306
$$

Period: 1961-74
The PDCENG index is assumed to rise at a rate of 5_{i}° p.a. for 1986-91, and by 4% p.a. thereafter.

A 3.2.3 AUTO CHARACTERISTICS

The projections of physical characteristics by class of vehicle have
al ready been extensively discussed in Chapter 4, The only points that migint be stressed are the dominant role of weight and displacement, and their interdependence. One should not be arbitrarily changed without adjusting the other. The further point to be made is that these projections relate not only to what mignt be technically feasible, but also to what consumers will be willing to purchase.

Included in the "charasteristics" category we also project the urban driving fraction of total vehicle miles. Historically this has risen by a remarkably stable 1% p.a. since 1953, the only significant deviation being the unusually sharp increase in 1972. Since a decline in the rate of urbanization growth is anticipated, we have slowly trended the uroan driving growth downards throughout the period.

Finally, we have the exogenized parameter values, which are mostly extended using 1974 values. Included here are the used car price exponer.tial decay rates and the domestic class price relatives.

TABLE A 3-1
TABLES OF EXOGENO'JS INPUTS, BASELINE

TABLE	NAME	PAGE
2.01	Demographic Variables	A3-12
2.02	Economic Variables Genera? Interest Rates Consumer Prices	A3-17
2.03	Economic Variables Auto Taxes	A3-22
2.04	Economic Variables Other Costs and Prices	A3-27
2.05	Auto Characteristics Curb Weight Engine Displacement	A3-32
2.06	Auto Characteristics Fraction With Automatic Transmission	A3-37
	Fraction With Overdrive	
2.07	Auto Cheracteristics Fraction with 4 Cylinders Fraction With 6 Cylinders	A3-4?
2.08	Auto Characteristics Miscellaneous	A3-47
2.09	Auto Characteristics Domestic Price Ratios	A3-52
2.10	Fuel Consumption Efficiency Factors	A3-57

lHf 1 1EM	1915	1976	1971	1970	1970	1980
	56,197	57.108	50.117	59.105	60.10 ?	61.080
	2.08	1.62	1.71	1.70	1.09	1.63
	19,105	19,512	${ }^{19,886}$	20.270	20.652	21.035
Si XGRUMity	2.79	2.11	1.92	1.95	1.88	1.85
	0,309	0.306	0,306	0.306	0.307	0.305
H1 XGRUMital	0.0 .39	0.56	0.07	-0.01	0.06	-0.64
01						
gothaction of familitg with 5a persums l	0.156	0.197	0.103	0.137	0.132	0.127 $-3,82$
111 xGhGwthl	-4.39	-4.53	-0,05	-9,19	-3.7A	-3.82
121						
	0.076	0.489 1.78	0,081 -0.71	0.481 0.07	0.081 0.01	0.488 0.01
!'11 EGKOHTH!	1.07	1.14	-0.71			
Inipereent of pop, in methopolitan arfas i	14,93	75.88	16.50	17.08	17.51	17.87
171 eganuth	2.21	1.21	0.89	0.68	0.55	0.47
				0.057	0.057	0,05?
	-0,41	10.05 0.02	0.02	0.02	0.02	0.02
zelfraction of poip, In E.N. EENTGAL hegioal	0.192	0.102	0.192	0.192	0.192	0.102
2il 2 artiwthl	-0.82	-0,05	-0.05	-0.05	-0.05	
2915						
	0.045	0.045	0.006	0.006	0.040	0.046
2hl EGROMTHI	1.33	0.33	0,33	0,33	0.33	0.33
?l1Fractum uk upo in Pacific pegion						
caifatiction ur prop, in pacific region í	0.132	0.133	0.130	0.115	0.136	0.130
291 XGR(INTH!	0.0 in	0.66	0.66	0.00	0.66	0.60
3ilmaction if piop. In w,s. central rlgitnit	0.09 A	0.098	0.098	0.099	0.023	0.098
$3>1$ PGRONTH1	0.76	0.01	0.01	0.01	0.01	0.01
381	1.017	1.011	1.017	1.017	1.017	1.017
引! zrabumin	-2.23	0.0	0.0	0.0	2.0	0.0
	0.974	0.994	0,994	0.978	0.990	0.770
3H1 20.ewthl	-0.00	0.0	0.0	0.0	0.0	0.0
191						
	0,9113	0,943	0.993	0.943	0,903	0.903
411 2GR(l)rlil	-0.02	0.0	0.0	0.0	0.0	0.0
					120.34	143.05
"SININIfR	128.4a	131.06	13.157			
	2,40	2,35	2.37	2,18	2,37	1.93

assimptions fore exgrimous variables 1975 － 2000

1．1714 if	19 P 1	198？	1983	1984	1985	1968
IINIMHER OF FAUILIFS MILL FAMILIESI	62.077	63.093	64.071	65.012	65．8．4	66.752
2i EGAOMTH：	1.63	1.64	1.55	1.47	1，36	1.30
31 l						
GIPUMGER OF UNREL，IHOIVIDHALS MILL PEPSI	21，406	21.747	27.085	22.412	22.737	23.017
51 2GRURITHI	1.76	1.59	1.55	1.48	1.45	1.23
GIIFHACIIIN GF FAMILIES WIIM 3 OR a PrRS，	9.306	0.30 h	0.395	0.307	0.304	0,305
81 \％GRilitill	0,39	－0．： 2	－0，17	0.37	－0，78	0.35
91 il						
IOIFRACTION OF FAMILIES mit： 5 ¢ PERSIMS I	0.122	0.117	0.113	0.110	0,107	0.103
111 \＆CRUWTHI	－3，95	－3．40	－3．98	－2．99	－3．02	－3．07
121 ！						
IHFRACIION OF PRP． 20 PU 29 YEAHS ILCO I	0.480	0.978	0.973	0,468	0,980	0.458
14i xGhumili	－0，17	－0，58	－0．91	－1．20	－1．69	－2． 23
Sistimat						
	7R．18	78．96	70，71	78，93	79．13	79.35
17 XCRUHIHI	0.40	0.35	0，31	0.28	0.26	0.24
（B）${ }^{\text {（1）}}$						
	0.057	0,057	0,057	0.058	0.057	0.057
201 \％GİIVFHI	0,03	0，03	0,03	0.03	0.03	0，0\％
	0，192	0.192	0.192	0.192	C．191	0.191
231 \％GRIMIHI	-0.03	-0.03	－0．03	$-0,03$	－0，03	－0．03
201 l						
	0.0118	0.040	0.046	0.041	0.049	0.047
	0.28	0.28	0,28	0.28	0.28	0，23
	0.138	0.138		0,140	0.141	0.102
391 XGROVITHI	0.57	0.57	0.57	0.57	0.57	0,49
30：						
GIFHACIIOM OF PRP，IN w．S．CENTHAL REGIONI	0.098	0，09月	c．098	0，098	0.078	0.098 .0 .01
331 XCOMWTM！	－0．00	－ 0.00	－0．00	－0，00	－0．00	－0．01
	1.017 0.0	1.017 0.0	1，017	1．017	1.017 0.0	1.017 0.0
\ni						
	0.994	0，794	0,9918	0,994	0.959	0.994
3 HO \％rytimitl	0.0	0.0	0.0	0.0	0.0	0.0
3＇1 ${ }^{\text {3 }}$（1）						
	0.914	0,943	0,943	0,793	0.993	0.903
©ll zGPlvithl	0.0	0.0	0.0	0.0	0.0	0.0
प？l						
	105.57	147．85	147．95	151.93	153．87	155．90
（山）そrohirilll	1.76	1.57	1.42	1.32	1.2 A	1．32

ASSUMPTISNS ERY EXCGENOUS VARIAELIS $1975-2000$
TAHLE 2.01 CTMOGRAPHIC VARIABLES

	17R7	19AR	1989	：990	1941	：992
HWHARF If FAMILIES MILL FAMILIESI	67．5H1	6R，382	69．185	69，901	10．611	11，179
21 EGRMMTHI	1.24	1.19	1，17	1.10	0.95	0.80
31.						
UINIMAER OF UNREL．IHISIVIDIALS MILL PERSI	23．2fa	23.554	23.820	24.088	20.342	20.561
¢1 ECREWiHI	1.10	1.10	1.15	1．11	1.05	0.90
hithaction fif farilite wlill 3 OR a PERS，！	0.305	0.300	0,303	0.305	0,302	0.303
	－0．18	－0．21	－0，20	0.39	－0，81	0.35
91.						
Inifhaction of ramilits mith st persins i	0.101	0,098	J．096	0，094	0.092	0，090
111 ecofiritil	－2．49	－2，52	－2，56	－1．98	－1．08	－2．00
121 11						
HIFHACTIIN UF PIIP． 20 TH 27 YEARS OLD	0.437	0.920	0.412	0.402	0,302	0，381
141 \％\％THIHIHI	－2．76	－2．09	－2．81	－2．52	－2．37	－2．81
131						
	79.49	79．66	79.81	79.95	80.00	80.00
171 KCRUWIHI	0.22	0.20	0.19	0.18	0.00	0.0
	0.057 0.03	0.057 0.03	0.057 0.03	0.057 0.03	0,058 0,0	0.057 0.0
211						
	0.191	0.191	0.191	0.191	0.191	0.191
？3l XGRUWIHI	－0．03	－0．03	－0，03	－0．03	－0．03	－0．03
2山l 1						
	0,007	0,047	0，047	0,047	0,047	0.047
ごl Xtiruvilil	0.23	0.23	0.23	0,23	0.0	0，0
311						
	0.142	0.193	0,149	0.144	0.140	0.140
	0，49	0.99	0.49	0.49	0.0	0.0
301						
	0.098	0.098	0.598	0.088	0.098	0,58
3？1 ECHIWIHi	－0．01	－0， 0 ：	－ 0.00	－0，01	0.0	0.0
331						
	1.017	1.017	1.018	1.017	1.017	1.017
311 eghavirl	0.0	0.0	0.0	0.0	0.0	0.0
	0.994	0.990	0.990		0.994	0.999 0.0
｜A｜XGROMTH1	0.0	0.0	0.0	0.0	0.0	0.0
				0.943	0.793	0.943
	0，003	0.943 0.0	0.903 0.0	0.943 0.0	0.0 0.0	0.0
cilitumhen or Licensell lhivers MIll PEHSI Q4l	157.76 1.37	159.71 1.11	161.21 0.94	162.82 0.87	163,95 0.82	165,16 0,70

LIHf i i F M	1983	1790	1995	1996	1997	1098
ITNITAEH IIF FANILIES MILL PMAILJSS	71.728	12．258	72.776	73.276	13．167	73.2 .93
21 x xGuivill	0.17	0.710	0.72	0.69	0，67	0.65
31 l						
dinurher of thatl．INCIVIOIIALS Mill Pehsi	24.772	20.971	25.151	25．318	25.053	25．583
St XFJIMVIHI	0.86	0,83	0.70	0.66	0.53	0,51
B1						
THFACIION TH FAMILIES WITH 3 He 4 PRRS．I	0.303	0.702	0.302	0.301	0.301	0.300
HI EGHONTHI	－11． 17	－0．18	－0．15	－0．16	－0．13	－0，14
ग1 1						
	0.087	0.088	3.086	0.085	0.089	0,083
111 EGHITVIHI	－1．36	－1．31	－1．36	－1．36	－1．35	－1，36
131						
	0.369	0.357	0.307	0.338	0，330	0.325
141 \｛GH（）will	－1．20	－3． 22	－2．90	－2．63	－2．29	－1．62
：＇1 1 ！						
	80.00	00.00	AO，00	80.00	0.000	80.00
111 SGQUNTHI	0.0	0.0	0.0	0.0	0.0	0.0
	0.057	0.057	0.057	0,057	0,051	0.057
201 YGKlIwTHI	0.0	0.0	0.0	0.0	0.0	0.0
211						
	0.191	0.181	0.19 .1 -0.03	0.181 -0.03	$0.19 i$.0 .03	0.191 -0.05
	－3．03	－0．03	－0．03	－0．03	－0．03	－0．03
211						
	0.047	0.087	0.048	0.047	0.007	0.047
วヶl XGNTH？NI	0.0	0.0	0.0	0.0	0.0	0.0
	0.100	0,100	0,145	0.108	0.160	0.100
321 Xciduwtel	0.0	0.0	0.0	0.0	0.0	0.0
301						
	0.098	0.098	0.998	3.098	0.098	0.098
	0.0	0.0	0.0	0.0	0.0	0.0
341						
	1.017	1.017	1.017	1.017	1.017	1.017
引1 ECRRCNTMI	0.0	0.0	0.0	0.0	0.0	0.0
	0.970	0.990	0.983	0.090	0.094	0.949
391 SGRUVIHI	0.0	0.0	0.0	0.0	0.0	0.0
\＄91，						0.943
usl	0.70	0.80	0.0	180 0.0	0.0	0.0
	166．33	167.53	16月．17	：76．09	171．42	172．78
	0.71	0.72	0.70	0.78	0.78	0.77

IAALE $\quad .01$ DFMUCRAPHIC VARIAGLES

\qquad 25.108
0.09 0.300
-0.15 0.082 $0.3>0$

-1.35 | \circ |
| :--- |
| 0 |
| 0 |
| 0 | 0.057 0.141 0.097

0.0 0.140
0.0 0.078 1.017
0.0
0.909 0.993 79.15
0.79

inismaciIne iff fanilits mith so versimis i $\begin{array}{lll}111 \\ 121 \\ 131 F R A C I I O N ~ I I F ~ P R P, ~ & 20 \text { YOROMTHI } \\ 191\end{array}$
Iblophcent of plif. IN METROPGLITAN AREAS I

? PJFRACIITM
? 31

zhifhactian of pif. in pacific hfoion it

! ! ! XTGHININ!

A3-16

PABLE 2．0？ECH：OMIC VAHIAHLES

L1 ${ }^{\text {Nt }}$			111 M			1975	1976	1977	197\％	1979	1980
1161	merall				1						
21	－EESSITAL	INCUM		Hill	1 clurt si	12119.70	1376.10	1520.00	1686．70	1826．30	1915，90
31					Y（ROMIHI	A．？ 3	10．11	10，06	10.97	8.28	8.19
11					1						
51	Merstinal	INCU＇14	Pexes	H1L	L Clirr si	16A．80	190．30	222，80	261．30	299.10	325．20
61					xGramill	－1．30	15，23	14.55	17.28	10．64	12.49
11					1 cuas si						
H1	pransftr	payme		AILL	C CURF SI	175．20	191．10	207.00	225，30	239.90	257.40
91					XGROWIHI	24.82	9.08	6.32	$8.8{ }^{\circ}$	6.48	7.29
101					1						
111	raplorati			Intu	PERSUASI	A4783．	97948	90029.	93468.	95586 ，	97153.
121					XGHOwIHI	－1．34	3.10	2.95	3.82	2，27	1.64
131					1						
141	UNENELOYM	MENT H			1	A． 50	7.70	7．20	6.10	5，30	5.20
1s1					\％Crowiml	51.79	－9．91	－6．09	－15，28	－13．11	－1．89
161					1						
111					1						
1811	Nithesi ha	AIESI			1						
191					1						
201	Gaxflith	passho	K Savirgs		PERCEHII	9.50	5.50	5.50	5.50	5.50	5，50
211					2tikurini	0.0	0.0	0.0	0.0	0.0	0.0
221					1						
231	CONSIIMER	INSTA	L．Chtoif	natt	，						
201	NEm Autos				PERCEMII	12.19	11.82	11.36	11.03	10.83	10.76
251					XGNOMTHI	3.30	03.001	－3．92	－2，92	－1．80	－0．61
201					1						
211					1						
2 HIC	Onsi：MFH DR	Rlce 1	nicts：		1						
291					1						
301	T：3AI．				1907＝1001	161．2	169.4	179.9	168.8	200.5	211.3
311					xGH）will	9.10	5.10	5.88	5.27	6.19	3．51
321					1907 $=1001$						
331	allin RTPA	Alds			190731001	170，6		207.1	221.9	237．8	255.3 7.38
311 151					\％Gnowill	17.63	－，¢ 6	7.05	7.11	7.18	7．3A
351	a！gn jhSu				1067E1001	145.9		179．9	196．9	219.5	238.6
311	nign fisua	unarice			\＆GRU：Y Pri	3.65	10.75	11.31	9.15	11.79	6.71
（1）					1						
171	110ts				$1487=1001$	126．3	132，0	130.9	146.9	153.5	150.9
401					\％GHOMTAI	6.67	4.51	5.98	5.00	9.97	5.52
411	Yapor nll				1067＝1001		163,7	173.5	1＊2，8	190．a	205．0
$4{ }^{\text {a }}$					\％GHEuTHI	6.19	5.42	5.99	5.37	8.10	5．40
041					1						
いら！	Dagring fr	fits			190751001	112.1	189.1	205.7	222.1	240.6	250.5
小い！					2GMllatil	A， 31	9．85	8.79	H．01	8.30	7.86

assimplinis fon exuctenils vartahles 1975-2000

assumbitins fotherigendis variables 1975 - 2000

ASEIINPIIIMIS FIR EXIGEPIOUS VARILALES 1985-2000
thalf 2.02 benimmic vahiables
 1799

assimplinns for exucenilig variahles 1915-2000
 $\begin{array}{lllllllllll}\circ & \approx \pi & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ $\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ TABIE 2.03 PCONOMIC VARIARLES - CONTINUED
 :
assumplions fith exncenous vahiablis 1915-20no
PABIE 2.03 ECONOAIC VARIABLES - CDNIINLIED

$\begin{aligned} & \text { KAItI } \\ & \text { 2GROMIHI } 0.0\end{aligned}$

assumitinas tor tyoctnous varianlis $1973-2000$

assumptions ftir eyogrois variables $1975 \cdot 3000$

LHE	118					$19 \mathrm{H1}$	19月？	1983	1984	19 AS	1986	
llither coets ant phicesi												
31	nom，auto input price imite				1912＝1001	177．0	183.2	$190 . ?$	197.0	203， 3	211.3	
91					xaruerthi	3.81	3.50	3.12		3.45		
51	Fnh．	Auto fxphul	1 palce	E 1 NDEX	$1970=1001$	26月， 0	280.0	292.6	305，8	319.6	333.9	
11		aup fxpa	pror		8G00niti	4.32	4．9A	4.30	0， 51	4．51	4.07	
AI			Pu；		－ 1							
91	pranspuatathen			Protx	1972＝1001	197.0	15c．1	157.5	102.1	166.3	170.5	
101				zoxumitil	3.16	3.47	3．85	2.82	2.59			
111	RETAI	Gatinlit				－cail			0.905	1.031	1.102	1，172
131		diashere			zgaliniti	7，22	7.11	6，82	6.84	6，90	6，30	
191					的							
151	Stiel	Schap pric			／GRnss im	27．53	109．50	109.73	115.21	120．97	125．81	
101					soruithi	5，10	4.99	5.06	9．90	5，00	9，00	

aSSIAPTIONS FIR CXOPENOIS VARIABLES 177S - 2000

A3-30
ASSIPAPITJMS FOR EXOCIENOUS VAHIAHLES $1975=2000$
tamle 2.00 e EONOMIC DAhtables - continued

			1975	1016	1971	1018	1019	1080
110	ung helohts	1						
21	- itatimpact. nomistic	1						
11			$\begin{array}{r} 2120 \\ 1.04 \end{array}$	$\begin{aligned} & 288 \mathrm{~A} \\ & -2.1 ; \end{aligned}$	$\begin{aligned} & 2580 \\ & -3,30 \end{aligned}$	$\begin{aligned} & 2520 ; \\ & 02,13 \end{aligned}$	$\begin{aligned} & 2950 . \\ & -2,78 \end{aligned}$	$\begin{aligned} & 2375 \\ & =3, \mathrm{Cin} \end{aligned}$
-1		scronmi						
क1		1						
al	SHICHMPACt, FOMEICA	vulunosi XGQ(lan)	$\begin{aligned} & 2300 . \\ & -0,38 \end{aligned}$	$\begin{aligned} & 2253 ; \\ & =2.1 i \end{aligned}$	$\begin{aligned} & 2230 . \\ & 0.0 \end{aligned}$	$\begin{aligned} & 2200 \\ & -2,22 \end{aligned}$	$\begin{array}{r} 2200 . \\ 0.0 \end{array}$	$\begin{aligned} & 2150 \\ & -2.27 \end{aligned}$
11								
P1		1						
01	compaci, noulstic	plubins	$\begin{aligned} & 3102 \\ & -1.15 \end{aligned}$	$\begin{array}{ll} 12 \mathrm{AC} \\ =0.60 \end{array}$	$\begin{aligned} & 3230 \\ & -1,52 \end{aligned}$	$\begin{aligned} & 32001 \\ & 02.03 \end{aligned}$	$\begin{aligned} & 3010 . \\ & =4,06 \end{aligned}$	$\begin{aligned} & 2900, \\ & -6,23 \end{aligned}$
10:								
111	coupacte forticu	pourinsí				2100,	2100.	$\begin{aligned} & 2650 \\ & -1,05 \end{aligned}$
111		potimas	$\begin{gathered} 2000 \\ 0.28 \end{gathered}$	$\begin{aligned} & 2730 \\ & -1.70 \end{aligned}$	$\begin{gathered} 2108 \\ 0.0 \end{gathered}$			
15	410-31/E	1						
151		$\begin{aligned} & \text { Puerns } \\ & \text { 8GRGRPIII } \end{aligned}$	$\begin{aligned} & 6019 . \\ & =0.06 \end{aligned}$	$\begin{aligned} & 3980 \\ & -1.90 \end{aligned}$	$\begin{aligned} & 3020, \\ & -1,58 \end{aligned}$	$\begin{aligned} & 3100 \\ & -3.18 \end{aligned}$	$\begin{aligned} & 1800 \\ & =2,10 \end{aligned}$	$\begin{aligned} & 3500, \\ & -2.76 \end{aligned}$
101								
111		,						
$\mid \mathrm{HI}$	Fりし6 31/8	vouriesi	$\begin{aligned} & 0517 . \\ & -1.89 \end{aligned}$	$\begin{aligned} & 6280 . \\ & -5.25 \end{aligned}$	$\begin{aligned} & 0020, \\ & =0.07 \end{aligned}$	$\begin{aligned} & =000: \\ & =2.90 \end{aligned}$	$\begin{aligned} & 3880 \\ & -1.58 \end{aligned}$	$\begin{aligned} & 3110 \\ & -1,82 \end{aligned}$
171		2cronirl						
201	Luxiliy, Dnatsilic	Putunsi	$\begin{aligned} & 9916 \\ & -1.07 \end{aligned}$	$\begin{aligned} & \text { C6AO } \\ & -5.05 \end{aligned}$	$\begin{aligned} & 0.200 \\ & -5.50 \end{aligned}$	$\begin{aligned} & 03001 \\ & -2,11 \end{aligned}$	$\begin{array}{cc} 120 \\ 10 \end{array}$	$\begin{aligned} & 110 \\ & -1,65 \end{aligned}$
321		2000winl						
231		1	$\begin{aligned} & 1>00 \\ & =1.20 \end{aligned}$	1200.	3200.	1200.	$\begin{aligned} & 3150 \\ & -1,56 \end{aligned}$	$\begin{array}{r} 3150 \\ 0.0 \end{array}$
241		vinumis						
31		26.00atil		0.0	0.0	0.0		
2 l		!						
			!					
211 2.1	sumelinpact. onurstic	Climic incmesi	$\begin{array}{r} 1+9,5 \\ 0,33 \end{array}$	$\begin{aligned} & 102.8 \\ & -1.28 \end{aligned}$	$\begin{gathered} 158.0 \\ -2.71 \end{gathered}$	$151,2$	102.1	183.0-4.00
101		ctic icidutmi						
111		cunte IVCHEsi	$\begin{array}{r} 98.0 \\ -1.01 \end{array}$	90. 5	92.3			81.0
$32 i$	semerimpact. Pmulitan					OA, 0	no.0	
111		21.N()miol		04.45	-2.33	-9,86	0.0	-1,19
301		CUHIC inchisi		$\begin{aligned} & 230.0 \\ & -1.01 \end{aligned}$	$\begin{aligned} & 281.0 \\ & -2.67 \end{aligned}$	$\begin{aligned} & 260,0 \\ & -3,78 \end{aligned}$	$\begin{aligned} & 222,6 \\ & =9,75 \end{aligned}$	$\begin{aligned} & 205,9 \\ & -1,35 \end{aligned}$
W1	CHIDACT. DIMEsile		$25: 9$-0.62					
\|al		srothatal						
! 1	C.Mmpari, \% Oat 16,	$\text { Cunic Itsent } 3 \text { ' }$	$\begin{aligned} & 112.0 \\ & =1.20 \end{aligned}$	$\begin{aligned} & 111.0 \\ & 0.89 \end{aligned}$	$\begin{aligned} & 110.0 \\ & -0.90 \end{aligned}$	$\begin{aligned} & 109.0 \\ & -0.8: \end{aligned}$	$\begin{aligned} & 100.0 \\ & -0.92 \end{aligned}$	$\begin{aligned} & 106,0 \\ & -1.85 \end{aligned}$
$3+1$								
401 401		\% Chtormi						
401 011	410-s:2f	CUATC lacheis	$\begin{aligned} & 320,5 \\ & -2,35 \end{aligned}$	$\begin{aligned} & 320,5 \\ & -1,32 \end{aligned}$	$\begin{aligned} & 114.0 \\ & -2.00 \end{aligned}$	$\begin{aligned} & 206.9 \\ & -6.92 \end{aligned}$	$\begin{array}{r} 219.0 \\ -5.70 \end{array}$	$\begin{aligned} & 282.5 \\ & -5.91 \end{aligned}$
421		314thatal						
031	futb s1/k	cusic trenesi'	$\begin{gathered} 371,9 \\ -7,78 \end{gathered}$	$\begin{aligned} & 371.0 \\ & -1.80 \end{aligned}$	$\begin{aligned} & 159.9 \\ & -9.36 \end{aligned}$	$135,9$	$\begin{aligned} & 113.1 \\ & -7.08 \end{aligned}$	
401								$\begin{aligned} & 301,5 \\ & -5,37 \end{aligned}$
$0: 1$		\%1.atinin)						
4×1	LHalgy. MiPfsilt		$\begin{aligned} & 061,1 \\ & 0,31 \end{aligned}$	$\begin{aligned} & 285.0 \\ & -1.89 \end{aligned}$	$\begin{array}{ll} \bullet 1 R .0 \\ * R .07 \end{array}$	$\begin{aligned} & 303.0 \\ & -5.30 \end{aligned}$	$\begin{aligned} & 311.4 \\ & 04.83 \end{aligned}$	$\begin{aligned} & 150.0 \\ & -0.97 \end{aligned}$
411 $4+1$								
$4+1$ $4+1$		rcalli. ml						
Scil	turuay fonkicis	$\begin{array}{r} \text { rimic lefersi } \\ \text { g'pumerty } \end{array}$	$\begin{aligned} & 1: 9,2 \\ & -2,4 i \end{aligned}$	$\begin{aligned} & 171,0 \\ & -1.70 \end{aligned}$	$\begin{array}{r} 112.8 \\ -1.82 \end{array}$	$\begin{aligned} & 100.0 \\ & -1.85 \end{aligned}$	$\begin{aligned} & 103,9 \\ & -1,8= \end{aligned}$	$\begin{aligned} & 160.1 \\ & =1,620 \end{aligned}$
311								

119\%	111		1081	1982	1983	1988	19R5	1986
11	URA melchti							
21	shatompact, dumpstic	i						
31		xGHOMTAI	$\begin{aligned} & 2390 \\ & -3.16 \end{aligned}$	$\begin{aligned} & 2250 ; \\ & -2.17 \end{aligned}$	$\begin{aligned} & 2200 \\ & -2.82 \end{aligned}$	$\begin{aligned} & 2150 ; \\ & -2.81 \end{aligned}$	$\begin{aligned} & 2100 \\ & -2.33 \end{aligned}$	$\begin{aligned} & 2070 \\ & -1.63 \end{aligned}$
11 31								
01	shacrmpact. POuftrin		2150.	$\begin{aligned} & 21000 \\ & +2.33 \end{aligned}$	$\begin{array}{r} 2170 . \\ 0.0 \end{array}$	$\begin{aligned} & 2050 \\ & -2.38 \end{aligned}$	$\begin{gathered} 2050^{\circ} \\ 0.0 \end{gathered}$	$\begin{aligned} & 2000 \\ & -2.40 \end{aligned}$
11		gropmiti	2150 0.0					
${ }^{1}$		eitunai						
71	ctupact. Dumistic		$\begin{aligned} & 2900 \\ & -4,10 \end{aligned}$	$\begin{aligned} & 2725 \\ & -2.68 \end{aligned}$	$\begin{aligned} & 2050, \\ & =2.75 \end{aligned}$	$\begin{aligned} & 2515, \\ & -2.81 \end{aligned}$	$\begin{aligned} & 2500 \\ & -2.91 \end{aligned}$	$\begin{aligned} & 2800 \\ & =1,00 \end{aligned}$
101		egruntmi						
111		1						
121	condact, routiga	pnunnsi	$\begin{aligned} & 2000 \\ & =1.89 \end{aligned}$	$\begin{aligned} & 2550 \\ & =1.12 \end{aligned}$	$\begin{aligned} & 2500 . \\ & -1.06 \end{aligned}$	$\begin{aligned} & 2050 . \\ & -2.00 \end{aligned}$	$\begin{aligned} & 2000 \\ & -2.09 \end{aligned}$	$\begin{aligned} & 2350 \\ & -2.08 \end{aligned}$
131		mrubirly						
141	410.5172	amusi'	$\begin{aligned} & 3000 \\ & -2.80^{\circ} \end{aligned}$	$\begin{aligned} & 330 \pi \\ & -2,00 \end{aligned}$	3200.	$\begin{aligned} & 3100 \% \\ & =3.13 \end{aligned}$	$\begin{aligned} & 3000 \\ & -3.23 \end{aligned}$	$\begin{aligned} & 2040 \\ & -1,33 \end{aligned}$
151		Fnutios						
! -		xowntel			-5.03			
111	full 312 F	poumosí	$\begin{aligned} & 3700 \\ & -1,06 \end{aligned}$	$\begin{aligned} & 3590 . \\ & -3.24 \end{aligned}$	$\begin{aligned} & 3060, \\ & -3.35 \end{aligned}$	$\begin{aligned} & 3530_{0} \\ & -3.76 \end{aligned}$	$\begin{aligned} & 3200 \\ & =3.90 \end{aligned}$	$\begin{aligned} & 316 e \\ & -1.25 \end{aligned}$
191		RCHOTSMI						
201	tuximy, Dnutsilf	I	$\begin{aligned} & a 100 \\ & =1,08 \end{aligned}$				$\begin{aligned} & 3500 \text { i } \\ & =0.11 \end{aligned}$	
311		poijnsil		$\begin{aligned} & \text { Be5. } \\ & -3,10 \end{aligned}$	$\begin{aligned} & 3800 . \\ & -3,80 \end{aligned}$	$\begin{aligned} & 3650, \\ & -3.05 \end{aligned}$		$\begin{aligned} & 3960 \\ & -1.10 \end{aligned}$
221		sgruatmi						
331	Lurijay. Forgign	PDuvi	$\begin{aligned} & 31000 \\ & -1.50 \end{aligned}$	$\begin{array}{r} 3100^{\circ} \\ 0.0 \end{array}$	$\begin{array}{r} 3050, \\ -1.01 \end{array}$	$\begin{gathered} 3050 \\ 0,0 \end{gathered}$	$\begin{aligned} & 3000 \\ & -1,08 \end{aligned}$	$\begin{gathered} 3000 . \\ 0.0 \end{gathered}$
241		poundis						
P)								
$2+1$!						
2718	NGItI UTSPLAEEMEMt	!						
2 Pl	surceimpact. voresilc	eunic inctiks			110.0-5.98	107, ${ }^{2}$		
201		cuhic thetiks	120,2 $-0,62$	$\begin{aligned} & 117,0 \\ & -5,81 \end{aligned}$			105.0 -2.35	103.5 -1.35
111		chate incmesi	$\begin{array}{r} 81,0 \\ -1.15 \end{array}$				$\begin{array}{r} 82.0 \\ -1.80 \end{array}$	
321				$\begin{array}{r} 65.0 \\ -1.16 \end{array}$	A8. 0	33.0 -1.19		$\begin{array}{r} 81,0 \\ -1,22 \end{array}$
111		\% CuOtion			-1.18	-1.18		
301		Pintic liemisi	$\begin{aligned} & \operatorname{lng}_{0} 0 \\ & =A_{0}, i 6 \end{aligned}$				$\begin{aligned} & 150.0 \\ & -2.81 \end{aligned}$	$\begin{aligned} & 107.8 \\ & -1.60 \end{aligned}$
1s1	coninact, nomzsile			$\begin{aligned} & 171,1 \\ & =6.30 \end{aligned}$	$\begin{aligned} & 1 b 5.0 \\ & -6.89 \end{aligned}$	$\begin{aligned} & 150,5 \\ & 08.70 \end{aligned}$		
3 l		\$rincoimi						
171	CTHPACT, FOLFIG4	cheic incmisi	104.0-1.89	102.9-1.92	100.0	$\begin{array}{r} 78.0 \\ =2.80 \end{array}$	$\begin{array}{r} 96.0 \\ -2.00 \end{array}$	$\begin{array}{r} 04.0 \\ -2.08 \end{array}$
391 191								
onl	410.5125	frhait INCHISI	$\begin{aligned} & 206,5 \\ & =6,10 \end{aligned}$	$\begin{aligned} & 211,0 \\ & 00.29 \end{aligned}$	$\begin{aligned} & 216,0 \\ & -6,09 \end{aligned}$	$\begin{aligned} & 201,5 \\ & -0.71 \end{aligned}$	$\begin{array}{r} 195.0 \\ -3.23 \end{array}$	
$4!1$								$\begin{aligned} & 102,9 \\ & -1.13 \end{aligned}$
9 ${ }^{\text {a }}$								
411	futl sift	cunle lochesi	2ns.-4.91	$\begin{aligned} & 28 A .5 \\ & =0.3 A \end{aligned}$	$\begin{aligned} & 250.9 \\ & =6.55 \end{aligned}$	$\begin{aligned} & 233.1 \\ & =7.09 \end{aligned}$	$\begin{aligned} & 224.0 \\ & -3.90 \end{aligned}$	
$4{ }^{4} 1$								$\begin{aligned} & 221.2 \\ & -1.25 \end{aligned}$
451		206nが!						
ant \#\%	Lurtur. nos.Esilt	chate flerisi	$\begin{aligned} & 300.3 \\ & -3.10 \end{aligned}$	$\begin{array}{r} 316.0 \\ -7.14 \end{array}$	$\begin{aligned} & 299.5 \\ & =0 . \mathrm{ho}^{2} \end{aligned}$	$\begin{aligned} & 273.8 \\ & -7.03 \end{aligned}$	$\begin{aligned} & 562.5 \\ & -4.1 i \end{aligned}$	$\begin{aligned} & 299.5 \\ & -1.19 \end{aligned}$
¢A1								
441	Curtipy fingich		$\begin{aligned} & 15 \mathrm{~A} .0 \\ & -1.6 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 155.0 \\ & -1.90 \end{aligned}$	$\begin{aligned} & 153.8 \\ & -0.71 \end{aligned}$	$\begin{aligned} & 152,5 \\ & -0.03 \end{aligned}$	$\begin{aligned} & 151,1 \\ & -0,30 \end{aligned}$	$\begin{aligned} & 150.0 \\ & -0.86 \end{aligned}$
01								
311								

assimptitins fua exnrimitus varianles 1975-2000

$1{ }^{1 / 4}$	1 11		1911	198 ¢	1080	1000	1091	1992
110	lige attiotit	1						
21	subcimpact. notafstic	1			$\begin{aligned} & 1050 \\ & -2.50 \end{aligned}$	$\begin{aligned} & 1800 \\ & -2,56 \end{aligned}$		$\begin{array}{r} 1000 \\ 0.0 \end{array}$
31		$P(111,0,01$	$\begin{aligned} & 2000 \\ & -1.05 \end{aligned}$	$\begin{aligned} & 20000 \\ & -1.90 \end{aligned}$			$\begin{array}{r} 1000 . \\ 0.0 \end{array}$	
51		1						
01	sunctimpact, ronetice		$\begin{array}{r} 3000 \\ 0,0 \end{array}$	$\begin{aligned} & 1050 . \\ & -2.50 \end{aligned}$	$\begin{array}{r} 1990 . \\ 0.0 \end{array}$	$\begin{aligned} & 1900 . \\ & -2.56 \end{aligned}$	$\begin{gathered} 1900 \\ 0.0 \end{gathered}$	$\begin{array}{r} 1900 \\ 0.0 \end{array}$
11		zounimi						
A1		1						
21	compact, onmssite		2020-1.03	2300-2.65	$\begin{aligned} & 85090 \\ & -1.60 \end{aligned}$	$\begin{aligned} & 2300 \\ & -1,71 \end{aligned}$	$\begin{array}{r} 2500^{\circ} \\ 0.0 \end{array}$	$\begin{array}{r} 2300 . \\ 0.0 \end{array}$
10!		2linflitini						
111	compacy. fouftcil			$\begin{aligned} & 2250 \\ & -2.17 \end{aligned}$	$\begin{aligned} & 2200 \\ & -2.22 \end{aligned}$			
121		zenulimi	$\begin{aligned} & 2300 \\ & -2.13 \end{aligned}$			$\begin{gathered} 2200_{0} \\ 0.0 \end{gathered}$	$2: 20 .$	$\begin{array}{r} 2200 \\ 0.0 \end{array}$
111								
101	N10.siz	poumesi'				$\begin{aligned} & 28000 \\ & -1.01 \end{aligned}$	$\begin{gathered} 2860 \% \\ 0.0 \end{gathered}$	$\begin{array}{r} 2800 \\ 0.0 \end{array}$
181		$\begin{aligned} & \text { rivulisi } \\ & \text { zGROMHI } \end{aligned}$	-1.959	-1.31	2800;			
111	fult sizt	Poumasi						
1al			3120-1.29	$\begin{aligned} & 30 A 0 \\ & -1.20 \end{aligned}$	$\begin{aligned} & 3000, \\ & -1,3 j \end{aligned}$	$\begin{aligned} & 10 n 0 \\ & -1.32 \end{aligned}$	$\begin{aligned} & 1000 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 3000 . \\ & 0.0 \end{aligned}$
171		2: \%htintal						
301	Luritur, onussilc	1	$\begin{aligned} & 3020 \\ & -1.16 \end{aligned}$					
211		plutiost		$\begin{aligned} & 3 \text { SRO } \\ & =1.17 \end{aligned}$	3309 -1.88	$\begin{aligned} & 3300 \\ & =1.20 \end{aligned}$	$\begin{gathered} 3300 . \\ 0.0 \end{gathered}$	$\begin{aligned} & 3309 . \\ & 0.0 \end{aligned}$
?21		zGentimi			-1.:8			
331		1	$\begin{aligned} & 2930 \\ & -1.61 \end{aligned}$	$\begin{gathered} 2050 . \\ 0.0 \end{gathered}$	$\begin{aligned} & 2000 \\ & =1.60 \end{aligned}$	$\begin{gathered} 2990 \\ 0,0 \end{gathered}$	$\begin{gathered} 2 \times 00 \\ 0.0 \end{gathered}$	$\begin{array}{r} 2000 \\ 0.0 \end{array}$
241		prounsi						
251		\% Crecinimi						
2 Cl		,						
plltring nisplaçmplat								
2 Al		cuate lichesi	$\begin{array}{r} 102.0 \\ -1.04 \end{array}$	$\begin{array}{r} 100.0 \\ -1.96 \end{array}$	01.5	95.0	95.0	
211	shartivatact, onursilc							$\begin{aligned} & 75.0 \\ & 0.0 \end{aligned}$
121		\%GUUTHI			-2.30	-2.36	0.0	
311	mabertipact, flutigut	chate rectesí	$\begin{array}{r} R O .0 \\ -1.23 \end{array}$	$\begin{aligned} & 00,0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 00.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 80.0 \\ & 0.0^{\circ} \end{aligned}$	$\begin{aligned} & 80.9 \\ & 0.0^{\circ} \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0^{\circ} \end{aligned}$
111		8rumeith						
141	counacto nimestite	cusic rachesi	$\begin{aligned} & 105.2 \\ & -1.03 \end{aligned}$	$\begin{array}{r} 122,8 \\ -1,65 \end{array}$	$\begin{array}{r} 100.4 \\ -1.68 \end{array}$	$\begin{array}{ll} 18 \mathrm{~A}, 0 \\ 01.71 \end{array}$	$\begin{gathered} 13 \text { A. } 0 \\ 0.0 \end{gathered}$	$\begin{gathered} 130.0 \\ 0.0 \end{gathered}$
121								
101		zrounitel						
1/1	coupact, gotiton	curte menesi	$\begin{gathered} \text { apis } \\ -c . i s \end{gathered}$	$\begin{gathered} 00.0 \\ -2.11 \end{gathered}$	$\begin{array}{r} \text { An.0 } \\ -2.22 \end{array}$	$\begin{aligned} & \text { An. } 0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 80.0 \\ & 0.0^{\circ} \end{aligned}$	$\begin{aligned} & 6 \mathrm{~A} .0 \\ & 0.0^{\circ} \end{aligned}$
Sal		chite ine						
Q 1	"1n-512t	Cutie lichisí	$\begin{aligned} & 1 A 7 .{ }^{1} \\ & -1 . j 5 \end{aligned}$	$\begin{aligned} & 181,2 \\ & -1,37 \end{aligned}$	$\begin{aligned} & 180.6 \\ & -1.30 \end{aligned}$	$\begin{aligned} & 1.2 .0 \\ & -1.01 \end{aligned}$	$\begin{gathered} 162.0 \\ 0.0^{\circ} \end{gathered}$	$\begin{aligned} & 182,0 \\ & 0,0 \end{aligned}$
411								
421								
411	PULL S11t	rinte llchesi	$\begin{aligned} & 219.9 \\ & -1.21 \end{aligned}$	$\begin{array}{r} 215,6 \\ -1.20 \end{array}$	$\begin{array}{r} 212,0 \\ -1,30 \end{array}$	$\begin{array}{r} 210.0 \\ -1.32 \end{array}$	$\begin{aligned} & 210.0 \\ & 0.0 \end{aligned}$	$\begin{gathered} 210,0 \\ 0.0 \end{gathered}$
4.t		:l.N(inimi						
401	Lixilur. nimisitc		$\begin{aligned} & 25 n, 9 \\ & -1 . i n \end{aligned}$	$\begin{aligned} & 253.5 \\ & -5.17 \end{aligned}$	$\begin{aligned} & 250.5 \\ & -1.18 \end{aligned}$	$\begin{aligned} & 2 a ?, 5 \\ & -1.20 \end{aligned}$	$\begin{gathered} 207.5 \\ 0.0 \end{gathered}$	$\begin{gathered} 201,5 \\ 0.0 \end{gathered}$
411								
4 HI								
491	LHAl\|wy Pratigy	Culle liches	$\begin{aligned} & 10 A .8 \\ & -0 . A 0 \end{aligned}$	$\begin{aligned} & 147.5 \\ & -0.07 \end{aligned}$	$\begin{aligned} & 106.3 \\ & -0.01 \end{aligned}$	$\begin{gathered} 105.0 \\ -6.80 \end{gathered}$	$\begin{aligned} & 105.0 \\ & 0.0 \end{aligned}$	$\begin{gathered} 125.0 \\ 0.0 \end{gathered}$
301								
311								

assumpitims fon zinermouls vanianititis. 2000

ASSIMPTIONS FOR frijgendus varlahlis 1975 - 2020

UNF 17EM			1015	1970	1971	1978	1970	1980
118	action mith autimatic	155107						
21								
11	simeoruact．domestic	cractioni	0.5010	0.583	0.578	0.575	0.570	0，500
11		¢roturill	2.48	－1．19	－0，86	－0．52	0.87	－1．75
51								
H1	Stucimpact，flobith	fraction	n，576	0.576	0.576	0，576	0.576	0.570
101			2.00	－0．11	－0．33	－0．22	03.19	－0．35
121	COMPACT．FInRtigia	－raction！	0.760	0.790 0.0	0，704	0,794 0,0	0，708	0.794 0.0
111		YCormalit	0.0	0.0	0.0	0.0	0.0	0.0
191		chactioni		0.995	0.995	0.905	0,090	9.972
151 181	＂t0－stit	\％GHUHTHI	O．805	0.095	0.0	0.0	－0．10	－0．20
$111$$1$								
181	－utl strt	tractioni	0.979	0.099	0.990	0.999	0.998	0.997
191		\％640W1H1	－ 0,02	0.0	0.0	0.0	$0 \cdot 0.10$	－0，10
201 l			0.985	0.985	0.955	0.985	0.985	0.785
231			0.02	0.0	0.0	0.3	0.0	0.0
211		！						
P41	（llobry，rantign	shacritm！	0，884	0.084	0.880	0.880	c．abi	0.784
2¢		\％rguathi	0.0	0.0 ．	0.0	0.0	0.0	0.0
201		1						
PHFRESTIMN ATth ovtrinivet								
101 kconolti								
111		！						
121	sumenamact，filatigra	Fuacilobl	0.0	0.0	0.0	$0: 9$	0，0	0.0
\3］zontimiti								
191	（ חRPACT，mimestic	rractroni＇	0.0	0,0	0.0	0.0	0.9	0.0
loi eioneithi								
111	cimpactofngelion	－hactioní	0,	0,0	0.0	0,0	0.0	0.0
381 141 101	101 bibtiniml							0.0
411	410．S111	fatctical	0.0	0.0	0.0	0.0	0.0	0.0
पこり \％COnのTHI								
4 31		ghactioni		0.0	0,6	0.0	0.0	0.0
Uu1	FHLL StIE	thactind	0.0	0.0	0.6	0.0		
nol						0.0	0.7	0,0
$\begin{aligned} & 011 \\ & 0.31 \end{aligned}$	Llixuer，oimpstic	$\begin{aligned} & \text { fuserfod } \\ & \text { sranvet:1 } \end{aligned}$	0.0	0.0	3．0	0.0	0.1	0.0
491		1						
401	Lurlay．fithfign	－mactint	0.0	0.0	0.0	0.0°	0.0	0.0
311		81．0．tintil						

L17F	1 1. 1		1981	19A?	19A3	17 AO	19月5	1986
114	atigita mith autimatic	Ssjoni						
31		1						
31	sumenupact, porststic	practioil	0.350	0.550	0.55n	0,350	0.530	0.550
91		struntal	-1.70	0.0	0.0	0.0	0.0	0.0
31		1						
61	SubCHMPaCt. Fling itild	fractilial	0.570	0,516	0.576	0.576	0.574	0,576
11		xGativini	0.0	0.0	0.0	0.0	0.0	0.0
81		1						
91	COMPACT, OILESSIC	Fractioni	0.1000	0.890	0,600	C, 800	0.000	0,100
101		2FWOntmi	-0.16	0.0	0.0	0.6	0.0	0,0
111		1						
121	ctmpact. EIREIGN	fractioni	0.790	0.790	0.700	0.700	0.704	0.790
131		alumital	0.0	0.0	0.0	0.5	0.0	0.0
141		1						
151	M1D-312E	pracionm	0.990	0.990	0.990	0.990	0,990	0.990
131		2GRO*) ${ }^{\text {a }}$	-0.20	0.0	0.0	0.0	0.0	0.0
111		cit						
1 HI	FULL SIEE	- AACTIDA	0.795	0.995	c.775	0.995	0.985	0.985
191		2fincomel	-0.20	0.0	0.0	0.0	0.0	0.0
201		1						
$2: 1$	LIXPJQY. HRMEStic	Fractioni	0.985	0.985	0.985	0.985	0.985	0.985
221		scoumtal	0.0	0.0	0.0	0.0	0.0	0.0
211		1						
241	LUshay forlition	-rarrejul	0 ORRG	0.880	0.880	\%\%80	0.880	0.880
231		81, ¢TMTH1	0.0	0.0	0.0	0.0	0.0	
eht		'						
2118	dactilln mith ovephrivet	1						
2 Pl		1						
291	sunctumact, duapsitic	GPaCitimi	0.0	0.0	0.0	0.0	0.0	0.0
171		20.0ntil						
311		practionil	0.0	0.0	0,0	0.0	0.0	0.0
(1)	suncrapacr. finara	8(R1)APIA						
541		1						
51	coliract. romesitc	chactigini	n. 0	0.0	0.0	0.0	0.0	0.0
1 l 1		xGDusiti						
111 301	cidipacte foreigh	enacriona'	0.0	0.0	0,0	0,0	0.0	0,0
301	Crnacto montion	8Thijurni						
001		1						
411	410-512t	chacriuni	0.0	0.0	0.0	0.0	0.0	0,0
021								
431 441	Fill s1/t	-ascriumí	0.0	0,0	0,0	0,0	0.0	0,0
पै।	finl sire							
-4,								
$\begin{array}{ll} \text { al } \\ 491 \end{array}$	Luxiluy, onmestic	$\begin{aligned} & \text { \| DACliont } \\ & \text { \& Cowfi.tmi } \end{aligned}$	0.0	0.0	0.0	0.0	0.0	0.0
*ว1		1						
931	Luxllay. Ditilin	fationm	0.0	0.0	0.0	0,0	0.0	0.0
311		xCaumini						

thite z,00 ahto charactinishics - continuto

lfme Jitm			1009	2000
11	stractimpact, onmpsise	bactiont	0,550	0.5501
al Etirintal 0.0 0.0				
S1				
81	subenupact, fouftes	Pracitinat	0.575	0,5761
11 eganimi 0.0 6.01				
81	cmpact, onutsite	practioni	$0, \mathrm{AOO}$	n, NOSI
131 reai)ntill 0.0 0,0,				
111				
121 131	cnupact, matigy		0,180 0,0	0.1081 0,01
131				
\|s1	-10-9116	phacriona	0.990	0,0901
101 xitensill 0,0 0,01				
171 191 1				
121 egainithi 0.0 0.01			0.075	0.8951
201				
211				
301		-		
2 c	suncoupact, numistic.	practioni	0,0	0.0
3018250 arithi				
311		- acrimi'		
	Sthermpact, ponejen	Practrend	0.0	0.0
351	conpact, dovestic	practiont	0.0	0.0
$3 \cdot 1$ Seruilil 0,0 0,0				
181 391	cimpact, matstan	epactiona'	0,0	0,0
121 20, enateril				
001				
		Fractiny		0.0
431		2ghrintil		
4 mil				
491		-		
301		bracriomi	0.0	0.0
¢1				

LJNF	1 1 \％		1975	1976	1971	1076	1970	19月0
115	action mithe crabineas：	1						
21		1						
31	SUACOMPACP，OTMESTIC	Practioni	0.62 A	0.641	0.436	0.665	0，890	0.720
41		geatinti	－20．17	2.07	2.36	1.31	3.76	4.35
51		－						
61	subctimpact．funesima	fracisorl	0.988	0.9 Aa	0.986	0.989	0.980	0.980
11		teroniml	－0．00	0.0	0.0	0.0	0.0	0.0
A 1		1						
91	cu＇pirt．nlums ilic	－pactilitil	0.0	0.0	0.005	0.010	0.000	0.010 15.00
10：						109.00	300.10	15.00
111		cacriont						
121		FHactinht	1.000	1，000	1．000	1.000 0.0	1,000 0.0	1，0¢\％
111		2Greminl	0.00	0.0	0.0	0.0	0.0	0.0
141		1						
151	M10．918t	fratilishl	0.0	0.0	0.0	0.0	0.0	0.5
161		xCanalil						
111							0.0	0.0
151	FHL S125	bascrion	0,0	0.0	0.0	0.0	0.0	
141		zGrumital						
201	Litritey．nomystic	spactinfi	0.0	0.0	0.0	0.0	0.0	0.0
？21		8CE0will						
231		1						
24		Stactioni	0.213	0.213	0.213	0，213	0.213	0.213
PS1		zrigusini	－0．02	0.0	0.0	2.0	0.0	0.0
201		！						
211	Qaction mith o Cretant rst	1						
281		cractionl						
291 301			33．73	0.203 0.306	－8，80	－1．19	－0，00	－1，61
311		1						
？11		fractinal	0.010	0.016	0.016	0.016	0.016	0.010
111		8ceuminl	0.21	0.0	0.0	0.6	0.0	
311		Practiont						
341	Conpaci，nomisioc	bractiont	0,576	0.582	0.583	0，583	0.620	C．， 0 coo
301		zrathinl	1，32	1．0a	0.17	0.0		6.05
$1 / 1$		＇						
｜91	criatact，begica	frartiomi	0.0	0.0	0.0	0.0	0.0	0.6
171			0.0					
6，${ }^{1}$		－Racitomi					0.060	
411	M1n－SI2E		0.052 .49 .87	$0: 0$	0.0	1.0	$0.0 n 0$	100．00
431		，						
いい	rut sill	charitoli	0,005	0.076	0.007	0.007	0，008	0.009
4い1			－1．85	20.00	10，07	0.0	14.29	12.30
atil			0.0	0.0	0.0	0.0	0.0	0.0
4n1		coutirimi						
481		1						
501	Llurapy fonflith	Practimil	0.762	0.767	0.762	0.762	0.782	0.762
S11		8 chermill	00.00	0.0	0.0	0.0	0.0	0.0

LINE	1 ¢ \quad -		[8A1	19 A	1993	1888	1945	1986
11%	acifor mith a Crijnitrsi	1						
21		$!$						
31	suncompact. dormisitc	- hacirom	0.750	0.750	0.750	0.750	0.150	0.730
4		8chowll!	9.17	0.0	0.0	0.1	0,0	0.0
51		1						
61	shacimpact, funcilin	practionit	0.918	0.980	0.980	0.989	0.980	$n .989$
11		zegue ill	0.0	0.0	0,0	0.0	0,0	0.0
${ }^{81}$		1						
91	enmpact, nomegile	Fluctinnt	0.100	0.100	0.100	0,100	0.100	0.100
101		gGhumint	Q2,86	0.0	0.0	0.0	0.0	0,0
111		-ractioní						
121	COnPACt, foneign	+RACTIUNI \&GHIJITHI	1.000 0,0	1,000 0,0	1:000	1,000 0.0	1.000	1.000 0.0
131		2GHIJITH1	0,0	0,0	0.0	0.0	0,0	0.0
131	410-312f	chactiori	0.0	0.0	0.0	0.0	0.0	0.0
101		2collmiti						
17		1						
(0)	H1HL S12t	sractiofl	0.0	0.0	0.0	0.0	0.0	0.0
101		20.01winl						
201 211	LIJKIIRY. nnursile	cractioní	0.0	0,0	0,0	0,0	0,0	0.'
321								
311		1						
241	Llimility fintitin	- hactioni	0.213	0.213	0.213	0.213	0.213	0.213
251			0.0	0.0	0.0	$0, n$	0.0	0.0
2h1		1						
2118	Hactilin mith h Crhindinsi	1						
P月!		1						
201	subcompact, domestic	cracisimi	0.200	0.200	0.200	0,290		0.290
301		stinumint	-1.04	0.0	0.0	0.0	0.0	0.0
311		fractiomi'						
121	shatenmpaci. Fowlich		0.016 0.0	0.016 0.0	0.016 0.0	$\begin{gathered} =0,018 \\ 0,0 \end{gathered}$	$\begin{gathered} 0,013 \\ 0,0 \end{gathered}$	$\begin{aligned} & 0.016 \\ & 0.0 \end{aligned}$
131 101		8Galinl ${ }^{\text {a }}$	0.0	0.0	0.0	0.0	$0, n$	
351	compact. domisilc	pracisumi	0.700	0. 700	0.700	n. 700	0.100	0.700
3 ml		\% Finlimiti	6.06	n,0	0.0	0.0	0.0	0.9
111		1						
3 Al	crupact, matigit	ppactiomi	0.0	0.0	0.0	0.0	0.0	0.0
171								
001		1						
411	M1n-81/E	practionl	0.250	0.250	0.250		$\begin{aligned} & 1250 \\ & 0.0 \end{aligned}$	0.250 0.0
421		26.uncrel	56.25	0.0	0.0	0.0	0.0	
431	Full \$12t	fanctionit	0.010	0.010	0.110	0.010	0.210	0.010
451		8r.aljutal	11.11	0.0	0.0	0.0	0.0	0.0
anl						-. 0	0.0	0.0
081 4.11	Linliny, noursilic	Pancifnis	0.0	0,0	0.0	\cdots		0.0
471		1						
501		Fhactiobil	0.762	0.102	0,762	0.742	0.782	10^{762}
511		20, H 1001 TH	0.0	0.0	0.0	0.0	0.0	0,0

Afisumritims fig fxocitngilg vagiantes iats． 2000

し1\％\％－11さ＂			1987	198月	19月9	1900	1091	1992
118		1						
21	subcisaract，mbuzstic	1						
31		Phactiomi	0.730	0.150	0.150	0.750	0.750	0.750
01		8ratimily	0.0	0.0	0.0	0.0	0.0	0.0
31		1						
01	Sisacinuact．fure ten	bractiont	0.984	0.989	0，988	0.900	0.988	0.988
11		sentirini	0.0	0.0	0.0	0.0	0.0	0.0
A	combace－Dnvesitc	－						
91		Facilitit	0.100	0.100	0.100	0.100	0.100	0.100
101		\％induat	0.0	0.0	0.0	0.0	0,0	0.0
111	compacte roryigh	1						
$1 ? 1$		FROCIISM1	1.000	1，000	1.000	1.000	1.000	1.000
1：1		8：CROniHI	0.0	0.0	0.0	0.0	c．0	0.0
191		1						
151	＊10．5llf	Fwac．10\％1	0.0	0.0	0.0	0.0	0.0	0.0
161		86RONTHI						
111 181	FHLL S18t	craction＇	0.0	0，0	0.0	0.0	0.0	0.0
101		86Fij）${ }^{\text {a }}$						
201		1						
211	bliriory nomestic	cracisiont	0.0	0,0	0.0	0.0	0.0	0.0
2＞1		q／arimini						
211		1						
241	LHrump，siotiga	Fhactions	0.211	0.213	0.213	0.213	0，215	0.13
3 Cl		2CRUATH1	0.0	0.0	0.0	0.0	0.0	$0, \mathrm{C}$
201		1						
Plibracition mitha crbimitast		1						
2¢1		，						
201	з macompact，ounfsilc	Practilina	0.200	0.780	0.200	0.200	0.200	0，200
101		xGaturil！	0.0	0.0	0.0	0.0	0.0	0.0
311	sumenimact，Elatisa	enactiodi	0.015	0.016	0.016	0.018	0,016	0.016
3s1		86atimini	0.0	0.0	0.0	0.0	0.0	0.0
301		1						
131	CHMPACT，OnuFsilc	bractioni	0.100	0.700	0.100	0.700	0.100	0.100
3×1		2CR（）athl	0.0	0.0	0.0	0.0	0.0	0.0
371	COAPACt．F OuFitan	1						
1＋1		Enactiont	0.0	0.0	0.0	0.0	0,0	0,0
191		2cauatm						
9e1		－						
911 $4>1$	410．31／8	Fractinil	0.250	0.250	0.250	0.250	$\begin{array}{r} 0,256 \\ 0,0 \end{array}$	0.250
421 081		8 8010．91\％1	0.0	0.0	0,0	0.0	0.0	0.0
041	Fル6 str	cractionit	0.010	0.010	0.010	0.010	0，010	0.910
csi		\％G4i）nTH1	0.0	0.0	0.0	0.0	0.0	0.0
0 O 1								
411	Lloump．onupsilc	Fhacticyl	0.0	0.0	0,0	0.0	0.0	0.0
at		\％ratiolw						
491		－						
¢11		coatinut	0.162	0，768	0.782	0，762	0.787	0，702
311		81.601101	0.0	0.0	0.0	0.0	0.0	\bigcirc

Hagle z.pt alith chanacitaisitics - comtinutio

LINE	1 1 ¢ 4		1993	1009	1995	1996	1901	196 A
114	acijinn mith a crlinntasi	I						
21		'						
31	suacimpact, dumestic	FFatilorl	0.750	0.750	0.750	0.750	0.750	0.950
41		EGEINTMI	0.0	0.0	0.0	6.0	0.0	0.0
31		1						
01	sunciopact. lineilcn	practioni	0.98 Ca	0.904	0.984	0.984	0.988	0.900
11	sinciorat ,	SGRUNINI	0.0	0.0	0.0	0.0	0.0	0.0
01		1						
91	compact, onmesite	tractijut	0.100	0.100	0.100	0.100	0.100	0.100
101		2CNOATHI	0.0	0.0	0.0	0.0	0.0	0.0
111		1						
121	compaci. fidatica	pratimat	1.000	1.000	1,000	1,000	1.000	1.000
131		zenominl	0.0	0.0	0.0	0.0	0.0	0.0
101		1						
161	N10-St1/	buactionl	0.0	C.0	0.0	0.0	0.0	0.0
101	.	zrimumal						
111		-hactioni	0.0	0,0	0.0	0.0	0,0	0.0
141 171	full silf	2Guynlil	0.	0,0				
201		1						
211		puactionl	0.1	0.0	0.0	0.0	0,0	0.0
$2{ }^{1}$		26.utiniml						
231		I						
201	Luyumy inafich	buacitimi	0.213	0.213	0.213	0.213	0,213	$\begin{gathered} 0.213 \\ 0.0 \end{gathered}$
? 1		2:-wnotal	0.0	0.0	0.0	0.0		
? 01		I						
2118	asclitin with h Crlinntrgi	I						
2 Al		phactioni						
291	slonctiract, nimestis	thacisori	0.200	0.280 0,0	0.280	0.200 0.0	0.200 0.0	$\begin{array}{r} 280 \\ 0.0 \end{array}$
301			0.0	0.0	0.0			
111		practioni	0.014	0.016	0,016	0,0i6	0.016	0.016
131		2f00memil	0.0	0.0	0.0	0.0	0.0	0.0
341		1						
151		practinsl	0.700	0,700	0,700	0.700	0.700	0.700
3n1		rimimini	0.0	0.0	0.0	0.0	0.0	0.0
311		-ascriumi				0,0	0,0	0.0
17	cidract. fontion	xckiniol	0.0	0.0	0.0	0.0		
901		'						
411	"10-silt	Fhaction	0.250	9.250	0.750	0.250	0.250	0,250
421		2GROATHI	0.0	0.0	0.0	0.0	0.0	0.0
4		1						
491	rutt sizt	bacilima	0.010	0.010	0.010	0.010	0.010	0.010
abl		2,.whitimi	0.0	0.0	0.0	0.0	C. 0	0.0
4.1 $4>1$					0.0	$0, \mathrm{n}$	0,0	0,0
411	Luxiluy rimestic	yritionti	0.0	0.0	0.0	0,	0,0	
421								
401	-jrlisy, matirat	bustinm	0,762	0.762	0.762	0.162	0.962	0.782
31		20mbithl	0.0	0.0	0.0	0,0	0.0	0.0

the	1 1 1		1949	2000
111		1		
21		1		
11	suetrapari, domestic	chatioma	0.750	0.?501
41		scolinill	0.0	0.0)
41		1		
01	sue.nupact. roribghen	fractionl	0.787	0.9801
71		8r.anuthi	0.0	0.01
A 1		1		
91	compact, nOulsile	practioni	9.100	0.1001
101		8 80, 1 alil	0.0	0.01
111		- ${ }^{\prime}$		
121	r.n-pact, flifich	bhactinni	1.000	1.0001
131		8690nitl	0.0	0.0
101		- cactors		
151	M1c-312	¢ractinis	0.0	0.0
101		8rountml		
111				
191	Ful 312c	Practrial	0.0	0.0
191		80atinimi		
201	-	1		
211	LHxury, nemesisc	Ggactimin	0.0	0.0
? 211		8r, Higniti		
$\begin{aligned} & 231 \\ & 2.11 \end{aligned}$	LUXUAY, PREIGM	pascimi	0.213	0.2131
251		SEPUNTH:	0.0	0.0
201		1		
? 117	-atigas mifm - Crljuntesi	1		
2H1		1		
201	suncimpact. DOntsple	practinis	0.290	0.7401
301		8caniminl	0.0	0.0
311		1		
$3>1$	sumentpact, fluyigin	pracricill	0.016	0.0101
131		8G180.tnt	0.0	0.01
141		1		
341		Phacrios	0.100	0.7001
$3 n 1$		xGAliainl	0.0	0.01
311		I		
181	cnipact. M Jaticn	shactind	0.0	0.0
101		\$6athimi		
401		- pactron		
211	"10-81\%	¢paction	0.350	0.2501
$0 ¢ 1$		quaymini	0.0	0.0
431		1		
aul	PILL S 32e	praction	0.010	0.0101
051		\%tanminl	0.0	0.0
401		- pacilial		
481 4.81	Luxhay. nomsitic	-anctilipl	0.0	0.0
4.81 401		2fofliniti		
581		bractinta	0.767	0.7621
31			0.0	0.01

assigupitiens for extictenous valiahles $1975 \cdot 2000$

$A 3=48$

A3-49
assiliplions for exnernmes vartancts $1975 \cdot 2000$

2000

LINE
1「「M

A3-51
assinfitions fok exncenous variatles 1975 - 2000

assimpitions 10 IT exncenoug varpaples $1715-2000$
tahle z.07 allto characteristics - cobitinuen

assinspyiuns tor exicennus variahlis 1975-2000

ASSHMPIINHS FIR EXOLENTHS VASIABLES 1075-2000
HAHLE 3.09 aHIT CHABACTEGISTICS - CONSBNULD

A3-55

PAHLE 2.09 AUTU CHARACPERESICS - CONTIMUFD

PACLE 2,10 SURL CONSUNPIIUY ffFICIENCY FACTORS

gonil lobi $: 8$
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots

 $20.000 \quad 21.000 \quad 30.0 .0000$ $\therefore 0$
$\vdots 0$
$\vdots 0$
\vdots
\vdots :$\because \because \therefore \quad \therefore 0 \quad 0$
 $\begin{array}{ll}\therefore 0 & \therefore 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}$

Pable 2,10 fuel comsungign fificitncy facioas

APPENDIX A4
REPORT OF MEW TECHMOLOGY

The work performed under this contract has not ?ed to any new inventions: the resuiting econometric model is, however, both innovative and state of the art. It provides long run policy analysis and forecasting of annual trends in the U.S. automobile market, given various policy options and alternative socioeconomic futures.

END
DATE
EILMED
$6-26-80$
NTLS

[^0]: I To repeat, the general rules are: Subcompact: up to 100 inch wheelbase; Compact: 100+ to 111; Mid-Size: 111+ to 118; Full-Size: over 118; Luxury: classified by price.

 2/ Plymouth brought out a full-size model in 1961, but didn't offer the full range of full-size models until 1964.

[^1]: I/ While all Peugeot and Saab models belong in this group on the basis of the wheelbase criterion, problems (in addition to the Audi problem discussed in the text) include large wheelbase Citroens and the Volvo 164 which belongs in the luxury group.

[^2]: I/ A very few foreign cars could have been included in these classes. Huwever, none were imported in any substantial numbers, leading to very small proportions being involved. We therefore chose to classify them down as coinpacts (Citroen in a feiv years) or up as luxury cars (source of the English cars of the early fifties).

 2/ Between 1947 and 1969, the cars included in domesti: subcompacts are the following: (1) Crosley; (2) Nash Rambier and Rambler American (100 inch wheelbase); (3) Henry J; (4) Allstate; (5) Corvair; and (6) King Midget.

[^3]: 2/ See Thomas C. Austin and Karl H. Hellman, Passenaer Car Fuel Economy Trends and Influencing Factors, Society of Alutomotive Engineers Reprint No. 730790.
 1/ Due to the averaging process the parameters estimated for model aata cannot be directly applied to class data.

[^4]: 1/ Part of this fall is due to a change in the Consumer Reports city test, causing MPGC to be 8-10\% higher, 1950-66, i.e. about half the dummy variable shift. The dumny variable shifts can be seen in the changes in the dummy coefficients relative to the 1972 base.

[^5]: 1/ Displacement and curb weight rate were collected for cars with 4, 6, and 8 cylinder. engines installed. Since more than one engine displacement is offered for many of the cylinder sizes, the "typical" engine for the number of cylinders was collected as described in Section (i.e. ends) wās collected.

 2/ The definition of these classes is given in Section A 1.4.1, page Al-4.

[^6]: I/ $\$ 3,000,36$ month ?oun, miean APR, page 44, Tabie 1008-1.
 2/ Mean APR, page 49, Table 1011-1. Where not reported was equated to the bank rate plus 2% ($2 *$ was the average difference between the two).

[^7]: I/ A fixed distribution of mileage is assur:2d. While miles driven in a year undoubtedly does vary by state we nave : 10 data for this - as noted previously. NPG by class does vary by state because of different proportions of urban and highway driving.

[^8]: 1/The maximum options price series is purely an intermediate variable used in analyzing the consumer's actual options exfenditures. See Appendix $\dot{A} 2$ fnr its use.

[^9]: Source: Cost of Onerating An Automobile by L.L. Liston and C.L. Gautnier, U.S. Depariment of Transportation, Federal Hignway Administration, Office of Highway Planning, Highway Statistics Division, April 1972.

[^10]: Bureau of Labor Statistics Corsumer Frice Index for Used Cars Rebased to $1972=100$ (Code: 4111-2000)

 2/ Automotive News Alranac Wholesale Auction Price for Used Cars Converted to $1972=100$ index .

 3/ Average Retail Price of Used Cars Computed from NADA Used Car Price Statistics converted to $1372=100$ index.

[^11]: West Virginia

[^12]: I/Actual stock may temporarily rise above desired but this tendency is extremely "damped".

[^13]: 1/More years would have been desirable but these would have been unrepresentative for smaller cars.

 2/ Throughout the estimation process linear foms were found 10 yield equivalent results to log-linear for almost all model equations.

 3/ The weights assinned to current-year and lagged income are 4, 3, 2, 1. Thus 40% of the adjustment to a given income change occurs in ihte year of the change, 30 c the next year, etc.

 4/We experimented with various levels, $10+, 15+, 25+$. The $15+$ was statistically superior.

 5/PERI5+ and income usually move in the same direction.

[^14]: 1! See Appendix A1, Section A1.4.3, page A1-15.
 2/It is, of cour'se, quite likely that many factors not measurable for the cross-sectional analysis do have a significant impact.

[^15]: 1/See Chapter 4.0.

[^16]: 1/Scrappaje tends to move inversely to, and new car saies parallel, movements in desired stock. ("ceteris paribus").
 $\underline{2}$ Scrappage less "given" (predetermined) scrappage is estimated. Surviving cars over 20 years old are automatically scrapped.

[^17]: 1/Note that data on mileage by vintage do not exist over time. The 1972 mileage per vintage was increased siightly to align the total. We also had to impute annual mileage for cars 11-20 years old.
 $2 /$ Note that scrappage rates are perforce assumed equal across clasjes. We do not know to what extent mpg falls solely due to age.

[^18]: 1/ One would expect gas price increases to induce a movement towards small cars, slowly increasing AMspguldt.

[^19]: 1/Except domestic subcompacts for 1955-57 when none were soid.
 2/See Appendix Al.
 3/ Although the sampie is primarily limited by the number of Consumer Reperts tests, the EPA did not always test every engine size.

[^20]: 1/The elasticities with respect to PER15 + are slightly less than the \log coefficients.

[^21]: I/ The net result of these assumptions and the numbers of family units, MTWNA/FM, shows a slow, steady decline over the period 1975-1993, from 0.1957 to 0.1715 , then recovers to 0.1810 by 2000 .

